Изв. АН Эстонии. Физ. Матем., 1989, 38, № 3, 252-255

УДК 514.752.44

Т. ВИРОВЕРЕ

ОБ ЭВОЛЮТАХ ВЫСШЕГО ПОРЯДКА НОРМАЛЬНО ПЛОСКОГО КАРТАНОВА ПОДМНОГООБРАЗИЯ M_m В E_n

(Представил Г. Вайникко)

Введение

И. А. Схоутен и Д. Дж. Стройк определяют эволюту порядка λ кривой M_1 в E_n (см. [¹]) как линию, соприкасающиеся плоскости $(\lambda-1)$ -го порядка которой являются нормальными плоскостями данной M_1 , т. е. каждая из них проходит через точку M_1 и лежит в нормальной гиперплоскости кривой в этой точке.

Непосредственное обобщение этого понятия дает следующее

Определение 1. Эволютой $W_r^{(\lambda)}$ (г-эволютой порядка λ) подмногообразия M_m в E_n называется такое г-мерное подмногообразие ($r \ge m$) в E_n , что существует субмерсия $\varrho: W_r^{(\lambda)} \to M_m$, при котором соприкасающаяся плоскость (λ -1)-го порядка подмногообразия $W_r^{(\lambda)}$ в произвольной ее точке у проходит через точку $\varrho(y) = x \in M_m$ и содержится в нормальной плоскости подмногообразия M_m в этой точке x.

При r=m=1 получается вышеуказанная эволюта $W_1^{(\lambda)}$ порядка λ кривой M_1 ; при r=n-1, m=1, $\lambda=1$ получается полярная гиперповерхность $W_{n-1}^{(1)}$ кривой M_1 , т. е. огибающая нормальных гиперплоскостей этой кривой [¹].

Теорию эволют максимальных размерностей подмногообразия M_m в E_n в общем случае развивал уже Р. Р. Муллари (см. [^{2, 3}]). Он дал необходимые и достаточные условия существования последовательности эволют порядков 1, ..., λ +1, ...

$$W_{n-m}^{(1)} \supset W_{n-m-m_i}^{(2)} \supset \ldots \supset W_{n-m-\dots-m_{\lambda}}^{(\lambda+1)} \supset \ldots,$$

где m_{λ} — размерность λ -го главного нормального подпространства $N_{x^{(\lambda)}}$ подмногообразня M_m и каждая $W_{n-m-\dots-m_{\lambda}}^{(\lambda+1)}$ — огибающая семейства плоских образующих предыдущего $W_{n-m-\dots-m_{\lambda-1}}^{(\lambda)}$, $\lambda \ge 2$. При этом $W_{n-m}^{(4)}$ получается как огибающая семейства нормальных (n-m)-плоскостей $\{[x, T_x \perp M_m] | x \in M_m\}$ подмногообразия M_m в E_n (т. е. как непосредственное обобщение полярной $W_{n-1}^{(4)}$ кривой M_1 в E_n).

В настоящей работе изучаются эволюты высших порядков такого подмногообразия M_m с плоской нормальной связностью ∇^{\perp} в E_n (где $pm \leq n < (p+1)m$), у которого все главные подпространства $N_x^{(1)}, \ldots$, $N_x^{(p-1)}$ соответственно порядков 1, \ldots , p-1 имеют максимально возможную размерность m, а dim $N_x^{(p)} = n - pm$. Такое подмногообразие M_m в E_n названо в [4] картановым подмногообразием общего типа. Для такого M_m имеет место

Теорема 1 [4]. Картаново подмногообразие M_m общего типа в E_n ($pm \leq n < (p+1)m$) имеет последовательность эволют высших порядков

$$\mathbb{W}_{n-m}^{(1)} \supset \mathbb{W}_{n-2m}^{(2)} \supset \ldots \supset \mathbb{W}_{n-(p-1)m}^{(p-1)} \tag{1}$$

как плоскостных подмногообразий, причем каждая плоская образующая $S_x^{(\lambda)}$ эволюты $W^{(\lambda)}_{n-\lambda m}$ вполне ортогональна в $[x, T_x^{\perp}M_m]$ к соприкасающейся плоскости $[x, O_x^{(\lambda)}M_m] = [x, T_x M_m \oplus N_x^{(1)} \oplus \ldots \oplus N_x^{(\lambda)}]$ порядка λ и пересекается с последней в единственной точке $c_x^{(\lambda)}$, которая определяется из рекурентной формулы

$$\left| \overrightarrow{c_x^{(\lambda)}} - \overrightarrow{c_x^{(\lambda-1)}} \right| = \min_{z \in S_x} \left| \overrightarrow{c_x^{(\lambda-1)}} z \right|,$$

 $r\partial e c_x^{(0)} = x \in M_m.$

В настоящей работе устанавливаются три условия, эквивалентные между собой и тому, что картаново подмногообразие общего типа M_m в E_n обладает эволютой $W_r^{(\lambda)}$, где $r < n - \lambda m$ (см. ниже теорему 2).

Три понятия геометрии высшего порядка подмногообразий

Рассмотрим гладкое подмногообразие M_m в E_n и введем следующими определениями три новых понятия. Во-первых,

Определение 2. Пусть на M_m задано такое гладкое поле N_r нормальных r-направлений, что $N_r(x)$ в любой точке $x \in M_m$ содержит главные нормальные подпространства первых λ порядков $N_x^{(1)}$,, $N_x^{(\lambda)}$, т. е. пусть

$$N_r(x) = N^{(1)} \oplus \ldots \oplus N^{(\lambda)} \oplus N_{r_1}(x), \qquad (2)$$

где в правой части мы имеем ортогональное разложение. В такой ситуации поле $N_{r_{\lambda}}$ называется λ -нормальным к M_m . Будем говорить, что оно параллельно порядка λ относительно нормальной связности ∇^{\perp} подмногообразия M_m , если в любой точке $x \in M_m$ для любого $\zeta(x) \in N_{r_{\lambda}}(x)$ имеет место

$$d\zeta(x) \in N^{(\lambda)} \oplus N_{r_{\lambda}}(x).$$

Естественно положить $N_x^{(0)} \equiv T_x M_m$, тогда это определение при $\lambda = 0$ сводится к определению параллельности поля $N_r = N_r$, (см. напр., [⁵]).

Адаптируем к M_m репер $\{x; e_h, \xi_a, \xi_u\}$ так, что векторы $e_h \in T_x M_m, \xi_a \in N_r(x), a \xi_u$ ортогональны к ним. Здесь индексы пробегают следующие значения: *i*, *j*, $k=1, \ldots, m$; *a*, $b=1, \ldots, r$; *u*, v= $=r+1, \ldots, n-m$. Разложение (2) подпространства $N_r(x)$ позволяет репер $\{\zeta_a\}$ дальше адаптировать так, что $\zeta_{i_\mu} \in N_x^{(\mu)}, \mu=1, \ldots, \lambda; \zeta_{a_\lambda} \in$ $\in N_{r_\lambda}(x);$ здесь $i_\mu = m_{\mu-1}+1, \ldots, m_{\mu}$, где $m_{\mu-1} = \dim N_x^{(\mu-1)}, m_{\mu} = \dim N_x^{(\mu)}$ н $a_\lambda = m_{\lambda}+1, \ldots, r$.

Имеют место следующие деривационные формулы:

Отметим, что $d\zeta_{i_{\mu}}$ для любого $\zeta_{i_{\mu}} \in N_{x}^{(\mu)}$, $\mu = 1, ..., \lambda$, разлагается только по $N_{x}^{(\mu-1)}$, $N_{x}^{(\mu)}$ и $N_{x}^{(\mu+1)}$.

Из этих формул следует

Лемма 1. Поле $N_{r_{\lambda}}$ параллельно порядка λ относительно ∇^{\perp} тогда и только тогда, когда $\theta^{v}_{a_{\lambda}} = 0.$

Во-вторых, обобщим понятие тангенциальной вырожденности плоскостного подмногообразия [⁶] следующим образом:

Определение 3. Пусть задано семейство ϱ -мерных плоскостей $R_{\rho}(x) \subset [x, T_x \perp M_m]$ так, что $\bigcup_{x \in M_m} R_{\rho}(x)$ является $(m+\varrho)$ -мерным под-

многообразием (возможно, с особенностями), которое называется плоскостным подмногообразием $M_{m+\rho}$. Здесь $R_{\rho}(x)$ может не пройти через $x \in M_m$. Введем отображение

$$\chi: M_{m+\rho} \to M_m$$

так, что из $y \in R_{\rho}(x)$ следует $\chi : y \to x$. Плоскостное подмногообразие $M_{m+\rho}$ называется соприкасательно вырожденным ранга *т* порядка $\lambda \ge 0$, если

1) соприкасающаяся плоскость $[y, O_y^{(\lambda)}M_{m+\rho}]$ в любой точке $y \in M_{m+\rho}$ не меняется при изменении точки у вдоль его ϱ -мерной плоской образующей $R_\rho(x), x = \chi(y)$;

2) при $\lambda > 0$ его соприкасающаяся плоскость $[y, O_y^{(\lambda-1)}M_{m+p}]$ порядка $\lambda - 1$ содержится в нормальной плоскости $[x, T_x^{\perp}M_m]$ в точке $x = \chi(y)$.

В случае $\lambda = 0$ это сводится к определению тангенциальной вырожденности.

Пусть $\varrho = r_{\lambda}$. Предполагаем, что r_{λ} -направления плоскостей $R_{r_{\lambda}}(x)$ составляют поле $N_{r_{\lambda}}$ λ -нормальных к M_m направлений $N_{r_{\lambda}}(x)$. Справедлива

Лемма 2. Плоскостное подмногообразие $M_{m+r_{\lambda}} = \{R_{r_{\lambda}}(x) | x \in M_{m}\},$ у которого r_{λ} -направление $N_{r_{\lambda}}(x)$ любой плоской образующей $R_{r_{\lambda}}(x)$ λ -нормально к M_{m} , является соприкасательно вырожденным порядка λ тогда и только тогда, когда поле $N_{r_{\lambda}}$ параллельно порядка λ относительно ∇^{\perp} .

В-третьих, обобщим понятие огибающей семейства плоскостей [7].

Определение 4. Подмногообразие V в E_n называется огибающей порядка λ *m*-параметрического семейства *r*-мерных плоскостей {[x, N_r(x)]|x \in M_m}, если для каждой точки $y \in$ V найдется плоскость [x, N_r(x)], которая является соприкасающейся плоскостью порядка λ —1 подмногообразия V в точке y.

Замечание 1. Очевидно, каждое подмногообразие в E_n является огибающей порядка λ семейства своих соприкасающихся плоскостей $(\lambda-1)$ -го порядка. Если эти плоскости нормальны к M_m , то имеется дело с некоторой эволютой порядка λ для M_m .

Критерии существования эволюты высшего порядка

Пусть M_m является картановым подмногообразием M_m общего типа в E_n . Как уже выше отмечено, такое M_m обладает последовательностью (1) эволют высших порядков, каждая из которых имеет максимально возможную размерность.

Выделим среди всех возможных нормальных к *M_m т*-мерных плоскостей следующие:

Определение 5. Будем говорить, что г-мерная плоскость, проходящая через точку х∈М_т картанова подмногообразия М_т общего типа в En (pm≤n<(p+1)m) и содержащаяся в нормальной (n—m) плоскости [x, Tx+Mm], находится в общем положении порядка λ₀, если она имеет с плоскими образующими $S_x^{(1)}, \ldots, S_x^{(\lambda_0)}$ эволют порядков 1, ..., λ_0 (см. теорему 1) непустые пересечения минимальных возможных размерностей и не пересекается с плоскими образующими $S_x^{(\lambda_0+1)}, \ldots, S_x^{(p-1)}$ более высоких порядков.

Имеет место

Предложение 1. Писть Nr является полем нормальных r-направлений картанова подмногообразия M_m общего типа в E_n $(pm \leq n < (p+1)m)$, таким, что каждая плоскость $[x, N_r(x)], x \in M_m$ находится в [x, Tx+Mm] в общем положении порядка λ_0 , где $r = \lambda_0 m + r_{\lambda_0}$ (0 $\leq r_{\lambda_0} < m$). Плоскостное подмногообразие $\{y | y \in [x, N_r(x)] \cap S_x^{(\mu)}, x \in M_m\}$ размерности $r - (\mu - 1)m = m + r_\mu$ яв $r = \lambda_0 m + r_{\lambda_0}$ $(0 \leq r_{\lambda_0} < m)$. ляется огибающей порядка и семейства {[x, Nr(x) | x = Mm} при каждом µ=1, ..., λ_0 тогда и только тогда, когда поле N_{ru} r_µ-направлений плоскостей [x, N_r(x)] $\cap S_x^{(\mu)}$ параллельно порядка μ относительно ∇^{\perp} .

В классе рассматриваемых подмногообразий М_т имеет место также утверждение, обратное к замечанию 1:

Предложенне 2. У картанова подмногообразия М_т общего типа в Е_n каждая огибающая W^(µ) порядка µ семейства порядка и семейства m+r $\{[x, N_r(x)] | x \in M_m\}$ нормальных к M_m плоскостей, находящихся в общем положении порядка $\lambda_0 \ge \mu$, является $(m + \tau_{\mu})$ -эволютой порядка и этого Mm.

Итогом предложений 1, 2, леммы 2 и замечания 1 является

Теорема 2. Пусть на картановом подмногообразии M_m общего типа в E_n , (где $pm \leqslant n(p+1)m$) задано семейство $\{[x, N_{r_0}(x)] | x \in M_m\}$ нормальных к M_m r_0 -плоскостей $[x, N_{r_0}(x)] (m \leqslant r_0 < n - m)$, каждая из которых находится в общем положении порядка $\lambda_0 \leqslant p - 1$, т. е. имеет с каждой плоской образующей $S_x^{(\mu)}$ эволюты порядка $\mu \leqslant \lambda_0$ пересечение $[x, N_{r_0}(x)] \cap S_x^{(\mu)}$ размерности $r_0 - \mu m = r_\mu$ н $[x, N_{r_0}(x)] \cap S_x^{(\nu)} = \emptyset, \ \nu = \lambda_0 + 1, \dots, p - 1.$ Тогда при каждом значении µ=0, ..., λ_0 -1 следующие утверждения эквивалентны:

1) M_m обладает r_{μ} -эволютой $\{y | y \in [x, N_{r_0}(x)] \cap S_x^{(\mu+1)}, x \in M_m\}$ порядка $\mu + 1$;

2) поле Nr, нормальных к Mm r,-направлений Nr, (x) плоскостей $[x, N_{r_0}(x)] \cap S_{x^{(\mu)}}$, взятых во всех точках $x \in M_m$, параллельно порядка и относительно ∇^{\perp} ;

3) семейство нормальных к $M_m r_{\mu}$ -плоскостей {[$x, N_{r_0}(x)$] $\cap S_{x^{(\mu)}}$] x ∈ M_m} является соприкасательно вырожденным плоскостным подмногообразием порядка µ;

4) семейство { $[x, N_{r_o}(x)] | x \in M_m$ } обладает τ_{μ} -мерной огибаю-щей { $y | y \in [x, N_{r_o}(x)] \cap S_x^{(\mu+1)}, x \in M_m$ } порядка $\mu+1$.

ЛИТЕРАТУРА

- Схоутен И. А., Стройк Д. Дж. Введение в новые методы дифференциальной гео-матрин. Т. 2. М., ИЛ, 1948.
 Муллари Р. Р. // Уч. зап. Тартуск. ун-та, 1966, вып. 192, 47—64; 1967, выл. 206,
- 22-36.
- Мулари Р. Р. // Тр. вычисл. центра Тартуского гос. ун-та. Тарту, 1969, вып. 16.
 Вировере Т. М. О фокусно-эволютной структуре картанова подмногообразия M_n общего типа с плоской нормальной связностью в E_n / Тартуский гос. ун-т, Тарту, 1987, 30 с. Деп. в ЭстНИИНТИ 14.08.87, № 11-Эс87.

- Лумисте Ю. Г., Чакмазян А. В. // Итоги науки и техники. ВИНИТИ. Проблемы геометрии, М., 1981, 12, 3—30.
 Акивис М. А. // Изв. вузов. Матем., 1957, № 1, 9—19.
 Залгаллер В. А. Теория огибающих. М., Наука, 1975.

Тартуский государственный университет

Поступила в редакцию 29/IX 1988

T. VIROVERE

NORMAALTASASE CARTANI ALAMMUUTKONNA Mm KÖRGEMAT JÄRKU EVOLUUTIDEST RUUMIS En

On esitatud ruumi En alammuutkonna Mm puhul kõrgemat järku üldistused järgmistele mõistetele: evoluut, normaalrihivälja paralleelsus, tangentsiaalne kidumine ja mähkimine. Normaaltasase Cartani üldtüüpi alammuutkondade jaoks on leitud seos nende üldistuste vahel ja antud kõrgemat järku evoluudi olemasoluga kolm võrdväärset tingimust.

T. VIROVERE

ON THE EVOLUTES OF HIGHER ORDER OF A CARTAN'S SUBMANIFOLD M_m WITH FLAT NORMAL CONNECTION IN E_n

The evolute of higher order λ of a curve M_1 in E_n is a curve the osculating planes of which of order $\lambda - 1$ are normal to the M_1 [¹]. In the present paper this concept is generalized for submanifolds M_m in E_n in the following way. The r-dimensional $(r \ge m)$ submanifold $W^{(\lambda)}$ in E_n is called the evolute of order λ

for a submanifold M_m in E_n if there exists a submersion $\varrho: W^{(\lambda)} \to M_m$ so that the osculating plane $[y, O_y^{(\lambda-1)}W_r^{(\lambda)}]$ of order $\lambda - 1$ in the arbitrary point $y \in W_r^{(\lambda)}$ passes through the point $\varrho(y) = x \in M_m$ and lies in the normal plane $[x, T \perp M_m]$.

If a submanifold $M_m \subset E_n$ $(pm \leq n < (p+1)m)$ has a flat normal connection and its principal normal planes $N_x^{(1)}, \ldots, N_x^{(p-1)}$ are all *m*-dimensional, and $N_x^{(p)}$ is (n-pm)-dimensional, then M_m is called the submanifold of Cartan's general type. For this kind of M_m , it is proved that there exists a sequence of evolutes (1) of higher order, where every $W_{n-\lambda m}^{(\lambda)}$ ($\lambda = 1, ..., p-1$) consists of $(n - (\lambda+1)m)$ -planes $S^{(\lambda)}$, $x \in M_m$, each of which is orthogonal to the osculating plane $[x, O^{(\lambda)}M_m]$ of the order λ and intersects it at a point.

The main result of this paper is the following.

Theorem. Let on a submanifold M_m of Cartan's general type in E_n ($pm \leq n < (p+1)m$) be given a family $\{[x, N_{r_0}(x)] | x \in M_m\}$ of normal to M_m r_0 -dimensional planes $(m \leq r_0 < n-m)$, so that dim $([x, N_{r_0}(x)] \cap S^{(\mu)}) = r_0 - \mu m, \mu = 1, \dots, \lambda_0$ and $[x, N_{r_0}(x)] \cap S^{(v)} = \emptyset, v = \lambda_0 + 1, \dots, p-1$. Then, for every value of $\mu = 0, \dots, \lambda_0 - 1$ the following assertions are equivalent:

1° M_m has a r_{μ} -dimensional evolute $\{y | y \in [x, N_{r_0}(x)] \cap S^{(\mu+1)}, x \in M_m\}$ of the order μ +1, where r_{μ} = $r_0 - \mu m$;

 2° a field of r_{μ} -directions of planes $[x, N_{r_{\alpha}}(x)] \cap S^{(\mu)}$ is parallel of the order μ with respect to the normal connection;

3° the submanifold $\{y | y \in [x, N_{r_0}(x)] \cap S^{(\mu)}, x \in M_m\}$ (with singularities) is tangential degenerated with rank m and order μ ;

 4° the family $\{[x, N_{r_{o}}(x)] | x \in M_{m}\}$ has a r_{μ} -dimensional envelop $\{y | y \in M_{m}\}$ $\in [x, N_{r_n}(x)] \cap S^{(\mu+1)}, x \in M_m$ of the order $\mu+1$.