ÈÈSTI NSV TEADUSTE AKADEEMIA TOIMETISED. FOUSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1988, 37, 3

УДК 681.785

С. БАБИЧЕНКО, А. ДУДЕЛЬЗАК, Л. ПОРЫВКИНА

АНАЛИЗ ЭФФЕКТИВНОСТИ МЕТОДА СИНХРОННОГО ВОЗБУЖДЕНИЯ ФЛУОРЕСЦЕНЦИИ НЕФТЕЙ В МОРСКОЙ ВОДЕ

S. BABITŠENKO, A. DUDELZAK, A. POROVKINA. MEREVEES SISALDUVA NAFTA FLUOREST-SENTSI SÜNKROONSE SKANEERIMISE MEETODI EFEKTIIVSUS

S. BABICHENKO, A. DUDELSACK and L. PORYVKINA. EXCÎTATION SYNCHRONOUS SCANNING METHOD EFFICIENCY ANALYSIS FOR OIL FLUORESCENCE IN SEA WATER

(Представил К. К. Ребане)

Диагностика нефтяных загрязнений природных водных сред является актуальной экологической задачей. Современные спектрофлуориметрические методы детектирования следов нефтепродуктов в воде связаны с длительной обработкой (экстрагированием) проб воды для выделения полициклических ароматических углеводородов (ПАУ). В натуральных пробах воды флуоресценция ПАУ находится на фоне свечения растворенного органического вещества (РОВ) и сигнала спонтанного комбинационного рассеяния (СКР) возбуждающего излучения на молекулах воды. Это обстоятельство мешает точному определению концентрации нефтяных загрязнений. В целях спектрофлуориметрического выделения сигнала флуоресценции нефтепродуктов (НП) на фоне свечения РОВ в морской воде был предложен метод, основанный на синхронном сканировании возбуждения (МСВ) флуоресценции [1]. Спектральное фракционирование одной из компонент сложной смеси осуществляется с помощью одновременного (синхронного) изменения длин волн возбуждения и регистрируемого излучения с постоянным спектральным интервалом Δ между ними, величина которого определяется правилом Стокса для данной компоненты [2].

Настоящая заметка посвящена результатам численных экспериментов по моделированию спектров флуоресценции двухкомпонентной смеси НП и РОВ, выполненных для оценки эффективности МСВ при селективном и синхронном возбуждениях.

В случае одномасштабных спектров интенсивность флуоресценции двухкомпонентной смеси на длине волны максимума флуоресценции РОВ λ₂₂ при селективном возбуждении в максимуме поглощения нефти λ₁ имеет вид:

$$I(\lambda_{22}) = \eta_1(\lambda_1) I_1(\lambda_{22}) + \eta_2(\lambda_1) I_2(\lambda_{22}),$$
(1)

где η_1 , η_2 — весовые коэффициенты, определяющие эффективность возбуждения; I_1 и I_2 — интенсивность флуоресценции НП и РОВ при оптимальном селективном возбуждении. Интенсивность синхронного спектра на длине волны λ_{22} при спектральном интервале, равном стоксову сдвигу Ω_1 для НП (оптимальный сдвиг для выделения сигнала НП), выражается соотношением

$$I^{s}(\lambda_{22}) = \eta_{1}(\lambda_{1})I^{s}_{4}(\lambda_{22}) + \xi \eta_{2}(\lambda_{1})I^{s}_{2}(\lambda_{22}), \qquad (2)$$

где I_1^s , I_2^s — интенсивность синхронных сигналов НП и РОВ для оптимальных спектральных сдвигов Δ_1 и Δ_2 соответственно. Фактор ξ характеризует степень подавления интенсивности сигнала флуоресценции РОВ при использовании МСВ:

$$\xi = \exp\left\{-(\varkappa^2 - \Lambda^2)/2\delta_2^2\right\},\tag{3}$$

где $\varkappa = \Omega_1 - \Omega_2$ — разность стоксовых сдвигов НП и РОВ; Λ — расстояние между максимумами флуоресценции НП и РОВ; δ_2 — полуширина спектра возбуждения РОВ. При типичных параметрах спектров, наблюдаемых в эксперименте для исследованных нефтепродуктов в морской воде, ξ имеет значение в пределах 0,1—0,6.

Ширина линии флуоресценции модельной двухкомпонентной смеси при использовании МСВ определяется выражением:

$$\Delta\lambda^{2} = \frac{(A_{1}\delta_{1}^{2} + A_{2}\delta_{2}^{2}) + \delta_{1}\delta_{2}A_{1}A_{2}[(\delta_{1} - \delta_{2})^{2} + (\varkappa - 2\Lambda)^{2}/2]}{(\delta_{1}A_{1} + \delta_{2}A_{2})}, \qquad (4)$$

где $A_i = \exp\{-(\Omega_i - \Delta)^2/4\delta_i^2\}; \Omega_i$ — стоксовы сдвиги нефти (i=1) и РОВ (i=2). Минимум полуширины синхронной линии наблюдается при условии $\Delta = \Omega_1$.

В расчетах на ЭВМ спектры возбуждения и излучения задавались суперпозицией гауссовых кривых с характерными параметрами, соответствующими реальным значениям. Спектры излучения двухкомпонентной смеси при селективном возбуждении λ =280 пм в максимуме поглощения нефти (кривая а) и при синхронном возбуждении (кривые б, в, г) приведены на рис. 1. Интенсивности сигналов $I_{\rm CKP}$, $I_{\rm H\Pi}$ и $I_{\rm POB}$ относятся друг к другу как 0,25 : 0,5 : 0,5. Выделение сигнала СКР воды осуществляется при Δ =30 нм; Δ_1 =55 нм характеризует присутствие нефти, а РОВ выделяется при Δ_2 =170 нм.

Численно исследованы зависимости поведения крутизны, ширины, асимметрии, удельного интенсивностного вклада флуоресценции нефти в обычном и синхронном спектрах. Проведен сравнительный анализ стандартного отклонения полного и синхронного спектров двухкомпонентной смеси от соответствующих спектров НП (однокомпонентный образец).

Рис. 1. Модельные спектры флуоресценции морской воды с нефтепродуктом при соотношении интенсивностей сигналов СКР, НП и РОВ 0,25:0,5:0,5:1,2,3 — максимумы соответствующих компонент; а — возбуждение с λ =280 нм; б, в, г — синхронное возбуждение с Δ =55, 30 и 170 нм соответственно.

6 ENSV TA Toimetised. F * M 3 1988

Объект исследования, метод	Длина волны возбуж- дения, нм	Спект- ральный сдвиг, нм	Крутизна полосы d (I/I _{max})/dλ	Отклоне- ние фор- мы поло- сы от спектра НП, %	Асиммет- рия
НП + РОВ, МСВ		$30 \\ 35 \\ 40 \\ 45 \\ 50 \\ 55 \\ 60 \\ 65 \\ 70 \\ 75 \\ 80$	$\begin{array}{c} 0,030\\ 0,026\\ 0,031\\ 0,031\\ 0,032\\ 0,032\\ 0,032\\ 0,032\\ 0,032\\ 0,027\\ 0,026\\ 0,029\\ \end{array}$	$10.8 \\ 9.9 \\ 9.6 \\ 9.3 \\ 9.2 \\ 9.4 \\ 9.9 \\ 10.7 \\ 11.9 \\ 13.3 \\ 14.9$	$\begin{array}{c} 0,252\\ 0,643\\ 0,848\\ 0,894\\ 0,526\\ 0,554\\ 0,602\\ 0,666\\ 0,748\\ 0,846\\ 0,962\end{array}$
НП, МСВ		55	0,017	0	-0,066
НП + РОВ, селективное возбуждение	280		0,004	43	2,420

Расчетные характеристики полос флуоресценции модельной смеси НП и РОВ

Использование МСВ практически на порядок увеличивает крутизну линии флуоресценции по сравнению с обычным спектром. Наибольшее значение крутизны синхронного спектра двухкомпонентной смеси наблюдалось для линии с $\Delta_1 = 55$ нм (таблица). Минимальное значение среднего отклонения полос флуоресценции мефти в присутствии РОВ морской воды при МСВ от сигнала нефти в отсутствие РОВ характерно для синхронного спектра с $\Delta_1 = 50$ нм (9%). В полном спектре соответствующее отклонение составляет более 40%. Явно выражена зависимость асимметрии полосы флуоресценции двухкомпонентной смеси НП и РОВ от спектрального сдвига Δ (рис. 2). Низкое значение асимметрии при $\Delta = 30$ нм обусловлено достаточно симметричным сигналом СКР воды. Следующий минимум при $\Delta_1 = (50-55)$ нм указывает на наибольшее сходство синхронной полосы с сигналом нефтяной компоненты. Дальнейшее увеличение асимметрии с ростом Δ свя-

Рис. 2. Зависимость величины асимметрии модельного сигнала флуоресценции при синхронном возбуждении морской воды с нефтепродуктом от спектрального сдвига Δ.

зано с влиянием полосы излучения РОВ. В полном спектре флуоресценции морской воды с нефтью доля свечения нефти составляет 32%. Применение МСВ увеличивает удельный вклад «нефтяной» составляющей в синхронном сигнале до 86-88% для промежутка значений $\Delta = = (35-60)$ нм.

Закономерности, полученные в численных экспериментах, подтверждаются лабораторными и натурными исследованиями. Экспериментальный анализ образцов растворов различных сырых нефтей в морской воде показал, что при использовании МСВ происходит подавление сопутствующего сигнала флуоресценции РОВ с одновременным сужением полосы флуоресценции нефти (рис. 3). Концентрация нефти подбиралась так, чтобы отношение сигналов РОВ и НП было порядка единицы. МСВ был опробован в натурных условиях во время рейсов НИС «Арнольд Веймер» (1986, 1987 гг.) и позволил регистрировать наличие остатков нефтепродуктов в концентрациях 1—2 мкл/л на фоне флуоресценции РОВ. Измерения проводились на спектрофлуориметрах СФЛ (производства ОНИЛ Рижского медицинского института) и LS-3 фирмы «Perkin-Elmer».

Рис. 3. Спектры флуоресценции сырой нефти в морской воде (C = 5 мкл/л) при возбуждении с $\lambda = 250$ нм (1) и при синхронном возбуждении с $\Delta = 55$ нм (2).

Таким образом, применение МСВ для выделения сигнала НП на фоне сопутствующих полос в спектре излучения многокомпонентной смеси существенно повышает общую чувствительность метода флуоресцентного анализа при работе на мгновенных пробах воды.

Авторы благодарят К. К. Ребане за внимание к работе и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Бабиченко С. М., Дудельзак А. Э., Порывкина Л. В., Саар К. Ю. Способ обнаружения нефти на акваториях. Заявка на изобр., № 4130707/24—25 от 08. 10. 86. (1986).
- 2. Tuan Vo-Dinh. Anal. Chem., 50, № 3, 396-401 (1978).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Специальное конструкторское бюро Академии наук Эстонской ССР

Поступила в редакцию 30/XII 1987