LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ SHORT COMMUNICATIONS

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА

PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1987, 36, 3

УДК 621.391

https://doi.org/10.3176/phys.math.1987.3.15

И. АРРО

АЛГОРИТМ БЫСТРОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ ВЕЩЕСТВЕННОГО МАССИВА

I. ARRO. REAALANDMETE KIIRE FOURIER' TEISENDUSE ALGORITM
 I. ARRO. DER ALGORITHMUS DER SCHNELLEN FOURIER-TRANSFORMATION REELLER DATEN

(Представил Н. Алумяэ)

. 1. Введение

В практике цифровой обработки сигналов особое значение имеют алгоритмы, базирующиеся непосредственно на вещественных данных. Известны [¹⁻⁵] разные подходы к решению задачи вычисления дискретного преобразования Фурье (ДПФ) вещественного массива. Наиболее эффективным является алгоритм сокращенного вычисления ДПФ [⁴].

Однако с учетом аппаратных ограничений (разные комплекты микропрограммируемых БИС [⁶]) представляют интерес и алгоритмы, обеспечивающие высокое быстродействие при минимальных вычислительных ресурсах.

В данной статье и рассматривается вычислительная процедура, отражающая несовместимый вариант структурного параметра G=2 (или N/2) в алгоритме [⁴].

Предложенный алгоритм отличается от приведенного в [⁴] способом вычисления нечетных трансформантов и является подобным быстрому преобразованию Фурье по основанию 2.

2. Постановка задачи

Требуется вычислить ДПФ X(K) от исходного вещественного массива

$$Y(I), \quad I, K = \overline{1, N}, \quad N = 2^{LP},$$

LP — произвольное, но наперед заданное, положительное число, т. е.

$$X(K) = \sum_{I=1}^{N} Y(I) \exp(T2\pi I K/N),$$
 (1)

где $T = -\sqrt{-1}$ при прямом преобразовании.

340

Представим X(К) в следующем виде:

$$X(K) = XC(K) + TXS(K),$$
⁽²⁾

$$XC(K) = \sum_{I=1}^{N} Y(I) \cos (2\pi I K/N),$$
 (3)

$$XS(K) = \sum_{I=1}^{N} Y(I) \sin (2\pi I K/N).$$
 (4)

Рассматривая отдельно вычисление четных и нечетных компонент спектра, разбивая в формулах (3), (4) имеющиеся суммы на две для интервалов $I=\overline{1, N/2}$ и $I=\overline{(N/2+1), N}$ соответственно и осуществляя замену переменной I=I+N/2 во втором интервале, получаем:

$$Z_{(r+1)}(I) = Y_r(I) - Y_r(I + M/2),$$
(5)

$$Y_{(r+1)}(I) = Y_r(I) + Y_r(I + M/2),$$
(6)

$$I = \overline{1, M/2}, M = 2^{(LP-r)}, r = \overline{0, (LP-1)}, Y_0(I) = Y(I);$$

$$XC(2K) = \sum_{I=1}^{N/2} Y_1(I) \cos \left(2\pi I K / (N/2)\right),$$
(7)

$$XS(2K) = \sum_{I=1}^{N/2} Y_1(I) \sin \left(2\pi I K / (N/2)\right), \tag{8}$$

$$XC(2K+1) = \sum_{I=1}^{N/2} Z_1(I) \cos \left(2\pi I \left(2K+1\right)/N\right), \tag{9}$$

$$XS(2K+1) = \sum_{I=1}^{N/2} Z_1(I) \sin \left(2\pi I (2K+1)/N\right).$$
(10)

3, Нечетное трансформантное преобразование

Вычисление нечетных компонент синусного и косинусного преобразований (формулы (9), (10)) может быть осуществлено через циклические составляющие кратного периода следующим образом [⁴]:

$$XC(2K+1) = C_N(2K+1) + C_{N/2}(2K+1) + \dots + C_8(2K+1) - Z_1(N/2),$$
(11)

$$S(2K+1) = S_N(2K+1) + S_{N/2}(2K+1) + \dots +$$

$$S_{\varepsilon}(2K+1) + (-1)^{\kappa} Z_{1}(N/4), \qquad (12)$$

$$C_{N/R}(2K+1) = \sum_{I=0}^{N/4-1} Z_1(R(2I+1)) \cos\left(2\pi(2I+1)(2K+1)/(N/R)\right), \quad (13)$$

$$S_{N/R}(2K+1) = \sum_{I=0}^{N/4-1} Z_1(R(2I+1)) \sin(2\pi(2I+1)(2K+1)/(N/R)), \quad (14)$$

$$R = 2^m, m = \overline{0, (LP - 3)}, K = \overline{0, (N/8R - 1)}.$$

+

При сравнении формул (7), (8) с формулами (3), (4) замечаем их полную эквивалентность при дважды укороченном объеме. Таким образом, преобразования (5), (6) создают последовательно необходимые массивы данных для вычисления нечетных трансформантных преобразований меньшего периода, определяющие, в итоге, на основе четного-нечетного разбиения все четные компоненты спектра, т. е. отдельными преобразованиями вычисляются компоненты: по $Z_2(I)$, I=1, N/4 XC(2(2K+1)) и XS(2(2K+1)),

 $Z_3(I), I = \overline{1, N/8} XC(4(2K+1)) H XS(4(2K+1))$

И Т. Д. ДО

 $Z_{LP-3}(I), I = \overline{1, 4} XC(NK+N/8)$ и XS(NK+N/8);XC(N/4), XS(N/4), XC(N/2), XC(N).

4. Нечетный трансформант с периодом N

Для полного определения алгоритма быстрого преобразования Фурье вещественного массива (БПФВМ) требуются правила расчета $C_{N/R}(2K+1)$ и $S_{N/R}(2K+1)$ для всех R. Поскольку $C_{N/R}(2K+1)$ и $S_{N/R}(2K+1)$ вычислимы (формулы (13), (14)) по одинаковому принципу независимо от R, то для упрощения записи в дальнейшем полагаем R=1, причем $Z_{(r+1)}(I) \equiv Z(I)$.

Преобразуем формулы (13), (14) к виду:

$$C_N(2K+1) = \sum_{I=0}^{N/4-1} Z(2I+1) \left(\cos \left(2\pi (2K+1)/N \right) \right) \times$$

 $\times \cos \left(2\pi I \left(2K+1 \right) / (N/2) \right) - \sin \left(2\pi \left(2K+1 \right) / N \right) \sin \left(2\pi I \left(2K+1 \right) / (N/2) \right) \right),$ (15)

$$S_N(2K+1) = \sum_{I=0}^{N/4-1} Z(2I+1) (\sin (2\pi (2K+1)/N) \times$$

 $\times \cos \left(2\pi I \left(2K+1 \right) / (N/2) \right) + \cos \left(2\pi \left(2K+1 \right) / N \right) \sin \left(2\pi I \left(2K+1 \right) / N/2 \right) \right).$ (16)

Вводим обозначения:

$$XC_{N/2}^{i}(2K+1) = \sum_{I=0}^{N/4-1} Z(2I+1) \cos\left(2\pi I(2K+1)/(N/2)\right), \quad (17)$$

$$XS_{N/2}^{4}(2K+1) = \sum_{I=0}^{N/4-1} Z(2I+1) \sin \left(2\pi I \left(2K+1\right)/(N/2)\right), \quad (18)$$

тогда

$$C_N(2K+1) = XC_{N/2}^4(2K+1) \cos (2\pi (2K+1)/N) - XS_{N/2}^4(2K+1) \sin (2\pi (2K+1)/N),$$
(19)

$$S_N(2K+1) = XC_{N/2}^i (2K+1) \sin (2\pi (2K+1)/N) + XS_{N/2}^i (2K+1) \cos (2\pi (2K+1)/N).$$
(20)

Учитывая, что выражения (17), (18) представляют собой нечто иное, как нечетные трансформантные преобразования с периодом N/2[⁴], формулы (19), (20) определяют итерационную процедуру понижения периодов трансформантных преобразований и содержащихся в них трансформант до вырождения при N=4.

5. Построение и эффективность алгоритма БПФВМ

Общий алгоритм БПФВМ строится по аналогии с алгоритмом сокращенного вычисления ДПФ [⁴], но поскольку спектральное расширение отсутствует, результат получается с несколько большим количеством арифметических операций.

Осуществляя вычисления по приведенным здесь формулам (3) - (20) и выполняя преобразования (19), (20) тремя операциями умножения и сложения (вычитания) (при известных коэффициентах), для полу-. чения результата требуется выполнить количество математических операций, приведенное в таблице.

N	БПФВМ		
	Число веществен- ных умножений	Число веществен- ных сложений	Суммарное коли- чество операций
8	2	20	22
16	12	62	74
32	44	174	218
64	132	454	586
128	356	1126	1482
256	900	2694	3594
512	2180	6278	8458
1024	5124	14342	19466

6. Заключение

Алгоритм БПФВМ реализуется операциями, определяемыми формулами (5), (6); (11), (12); (19), (20). Все перечисленные преобразования выполнимы на базе модифицированной «бабочки» (количество операций умножения и сложения (вычитания) одинаковое), причем по сравнению с алгоритмом Кули-Тьюки тривиальные умножения исключены (см. таблицу 4.1 в [5]).

Главная особенность алгоритма БПФВМ, однако, заключается в том, что он непосредственно применим при вещественном исходном массиве и реализуется более чем в 2 раза меньшим количеством арифметических операций по сравнению с типовым алгоритмом быстрого преобразования Фурье.

ЛИТЕРАТУРА

- Agarwal, R. C., Cooley, J. W. J. Res. Develop., 30, № 2 (March), 145—162 (1986).
 Ersoy, O. IEEE Trans. Acoust., Speech, and Signal Processing, ASSP-30, № 1 (February), 219—222 (1985).
 Wang, Z. IEEE Trans. Commun., COM-31, № 1 (January), 121—123 (1983).
 Арро И. Изв. АН ЭССР. Физ., Матем., 36, № 1, 21—29 1987.
 Нуссбаумер Г. Быстрое преобразование Фурье и алгоритмы вычисления сверток. М. «Разио и спеце 1025

- М., «Радио и связь», 1985.
- Проектирование цифровых систем на комплектах микропрограммируемых БИС. М., «Радио и связь», 1984.

Специальное конструкторское бюро вычислительной техники Института кибернетики Академии наук Эстонской ССР Поступила в редакцию 2/XII 1986