EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FUUSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1986, 35, 3

УДК 512.4

О. ПОЛЕВИЦКАЯ

К ВЫЧИСЛЕНИЮ ВТОРОГО ПРЕПЯТСТВИЯ В ЗАДАЧЕ ПОГРУЖЕНИЯ С ПРОИЗВОЛЬНЫМ ЯДРОМ ПОРЯДКА *р*ⁿ.

(Представил А. Хумал)

Работа является продолжением [¹]. В ней сделаны некоторые уточняющие замечания к [¹]. Приведен пример вычисления второго препятствия. Затем сформулированы следствия для случая полей алгебранческих чисел.

1. Замечания к [1]

Сохраняя все обозначения [1], рассматриваем задачу погружения поля k с группой Галуа F над k_0 , связанную с точной последовательностью

$$1 \longrightarrow N \longrightarrow G \longrightarrow F = \Gamma(k/k_0) \longrightarrow 1, \tag{1}$$

здесь G — произвольная p-группа.

Замечание 1. Отметим, что в отличие от случая абелева ядра, в котором разрешимость задачи погружения с произвольным ядром N сведится к разрешимости задачи с ядром порядка p^n (теоремы Кохендорфера), в случае неабелева ядра этот вопрос остается открытым. Однако выполнение условия согласности для задачи с ядром порядка p^n следует из его выполнения для сопутствующей силовской задачи (см. [²]). Поэтому и вычисление второго препятствия в задаче с произвольной группой Gпри ядре N порядка p^n сводится к вычислению второго препятствия в задаче с p-группой G, которую мы и рассматриваем.

Замечание 2. Необходимо также заметить, что элемент v, построенный в [¹], попадает в центр Z_B алгебры B только при определенном выборе элемента q. В самом деле, для того, чтобы $v \in Z_B$, необходимо и достаточно, чтобы v коммутировало с θ и со всеми $g \in G$. То, что v всегда коммутирует с θ , проверяется непосредственно, а коммутативности v со всеми $g \in G$ можно добиться, подбирая для $q \in kN$ правый множитель из $D_A \cap kN$.

Действительно, найдем такое $v \in D_A \cap kN$, что $(\theta qv)^{\sigma} = \theta qv$ для всех $\sigma \in G$, или иначе $v^{\sigma} = ((\theta q)^{\sigma})^{-1}\theta qv$. Обозначим $((\theta q)^{-1})^{\sigma}\theta q = \mu_{\sigma}$. Имеем, $\mu_{\sigma} \in B$ и $\mu_{\sigma_1}^{\sigma_2} \mu_{\sigma_2} = \mu_{\sigma_1\sigma_3}$, так как $(u^{-\sigma_1}u)^{\sigma_2}u^{-\sigma_2}u = u^{-\sigma_1\sigma_2}u$. Следовательно, по теореме Шпайзера существует $v = \sum_{\sigma \in G} \mu_{\sigma}^{-1}$ такое, что $v^{\sigma} = \mu_{\sigma}v$.

Покажем, что $v \in D_A \cap kN$. Так как v выражается через $u = \theta q$ и $u^{\sigma l_{\sigma}} = u$, то и $v^{\sigma l_{\sigma}} = v$. Кроме того, $\mu_{\sigma} = u^{-\sigma}u = q^{-\sigma}\theta^{-\sigma}\theta q = q^{-\sigma}\lambda_{\sigma}^{-1}q \in kN \subset A$.

Итак, θq_{v} коммутирует со всеми $g \in G$, а тем более и $v = (\theta q_{v})^{p}$.

Замечание 3. Вообще говоря, $D_B \supset D_A(u)$ и $D_B \hat{e}_{\chi} = D_A(u) \hat{e}_{\chi}$, только если $ue_{\chi} \neq 0$. Если N — абелева группа, то пункт 2 из [1], осно-

ванный на строении алгебр Z_A и Z_B, остается в основном без изменений. Только нужно добавить одно дополнительное предположение: $ue_{x} \neq 0$ для любого e_χ ∈ Z_{hN}. В случае же неабелева ядра N необходимо внести уточнения.

Во-первых, при неабелевом ядре N необходимо предположить, что k — поле разложения для группы N. При таком предположении центральные идемпотенты e_{χ} алгебры kN образуют k-базис центра Z_{kN} алгебры kN (см. [³], с. 223, 226).

При абелевой группе N центральные идемпотенты алгебры

$$kN, e_{\chi} = (1/[N:1]) \sum_{n \in N} n\chi(n^{-1}), \chi \in \text{Hom}(N, k^*),$$

образуют k-базис $kN = Z_{kN}$ всегда. И, как видно, $e_{\chi}^{\phi^{k}} = e_{\chi\chi_{1}^{k}} \neq e_{\chi}$. Поэтому все компоненты $Z_A(u)$ имеют вид $\hat{k}_{\chi}[a_{\hat{\chi}}, v_{\hat{\chi}}]$ и форма второго препятствия в [1] выписана верно.

При неабелевом же ядре N в строении алгебр Z_A и $Z_A \cap Z_B$ возникают особенности, которые влияют на окончательную форму второго препятствия. Действительно, в этом случае не все центральные идемпотенты e_{χ} алгебры kN будут изменяться под воздействием θ и $u=\theta q$ (см. раздел 2. Пример). Поэтому для центральных идемпотентов ех возможны две разновидности простых компонент алгебры Z_A

I $Z_A e_{\chi} \approx \hat{k}_{\chi} (\gamma \overline{a_{\chi}}), a_{\chi} \neq 0$ (как и в случае абелева ядра), II $Z_A e_{\chi} \approx k_{\chi} = k_{\chi}$.

Как показано выше, для абелева ядра N разновидности II не возникает.

Утверждение. Пусть N — неабелева группа порядка pⁿ и пусть D_Ae_x не является матричной алгеброй порядка р и иe_x≠0 для e_x $(\hat{e}_{\chi} = \sum_{k=0}^{p-1} e_{\chi}^{\theta^{k}} \quad \partial_{\Lambda \pi} e_{\chi} \text{ buda I } u \hat{e}_{\chi} = e_{\chi} \partial_{\Lambda \pi} e_{\chi} \text{ buda II.})$ Torda $\partial_{\Lambda \pi}$ вида I. того, чтобы Bê, было матричной алгеброй порядка fp над некоторой своей подалгеброй, необходимо и достаточно, чтобы в случае І $Z_A(u)\hat{e}_\chi \approx \hat{k}_\chi [a_{\hat{\chi}}^2, v_{\hat{\chi}}^2]$ было матричной алгеброй порядка р, а в случае II поле $k_0(\theta)$ было полем разложения для алгебры $D_A e_{\chi}$. Лемма. Если e_{χ} вида I, т. е. $e_{\chi}^{u} \neq e_{\chi}$, то $C_{D_{A}(u)}(Z_{A}(u)\hat{e}_{\chi}) \subset D_{A}\hat{e}_{\chi}$.

Действительно, $D_A(u) = \{d_0 + d_1 u + \ldots + d_{p-1} u^{p-1}\}_{d_i \in D_A}$, причем d_i коммутируют со всеми $z \in Z_A$, в том числе с e_{χ} . $e_{\chi}^{d_{0}+\ldots+d_{p-1}u^{p-1}} = \prod_{k} e_{\chi}^{u^{k}} = \begin{cases} e_{\chi}^{u^{k}}, & \text{если лишь один из } d_{i} \neq 0\\ 0, & \text{если хотя бы два из } d_{i} \neq 0. \end{cases}$

Так как $e_{\chi}^{u^*} \neq e_{\chi}$ при $k \neq 0$, то $C_{D_A(u)}(Z_A(u)\hat{e}_{\chi}) \subset D_A\hat{e}_{\chi}$. Лемма доказана.

Рассмотрим возможность I. То, что распадение $Z_A(u)\hat{e}_{\chi}$ влечет распадение $D_A(u)\hat{e}_{\chi}$, очевидно (см. [4], теорема 4.4.2). Покажем обратное. Пусть $D_A(u)\hat{e}_{\chi} = (K)_p$, где K — некоторое тело. Как показано в [1], $Z_A(u)\hat{e}_{\chi} \approx \hat{k}_{\chi}[a_{\gamma}, v_{\gamma}]$ — простая центральная алгебра над полем \hat{k}_{χ} . Применяя теорему 4.4.2 из [4], имеем $D_A(u)\hat{e}_{\chi} = Z_A(u)\hat{e}_{\chi} \otimes_{\hat{h}_{\chi}} C_{D_A(u)}(Z_A(u)\hat{e}_{\chi}).$ По лемме

 $C_{D_A(u)}(Z_A(u)e_{\chi}) \subset D_A e_{\chi}$. По предположению $D_A \hat{e}_{\chi}$ — тело. Значит, $Z_A(u) \hat{e}_{\chi}$ — матричная алгебра порядка *р*.

Приведенные в [1] рассуждения относительно того, что $D_A(u)\hat{e}_{\chi}$ и

245

 $Z_A(u) \hat{e}_{\chi}$ — матричные алгебры порядка *р* одновременно, неполны. Обратимся теперь к возможности II.

По теореме (33.8) из [4] минимальный центральный идемпотент алгебры $kN \ e_{\chi_j} = (x_j/[N:1]) \sum_{a \in N} a_{\chi_j}(a^{-1})$, где χ_j — неприводимый характер группы $N, x_j = (X_j : k)$, а X_j — минимальный левый идеал простой компоненты $(kN)_j$ алгебры kN. В рассматриваемом случае $e_{\chi_j}^{\theta} = e_{\chi_j}$, поэтому e_{χ_j} является также центральным идемпотентом алгебры k_1N_1 и $\chi_j|_{N\setminus N_1} = 0$. Согласно [3], с. 262, упр. 7 $\chi_j|_{N,} = \psi_1 + \ldots + \psi_p$, где $\psi_s \ (s=1,\ldots,p)$ — различные неприводимые характеры группы N_1 , имеющие одинаковую степень. Идемпотент e_{χ_i} разложится в сумму p минимальных центральных идемпотентов алгебры

 k_1N_1 , соответствующих характерам $\psi_s: e_{\chi_j} = \sum_{s=1}^{P} \mathbf{E}_s, \mathbf{E}_s$ — минималь-

ные идемпотенты $Z_{k_1N_1}$.

Согласно [⁵], с. 112, имеем, $Ae_{\chi_j} = (T)_p$, $Be_{\chi_j} = (T_1)_p$, где T н T_1 — нормализаторы для E_s в Ae_{χ_j} и Be_{χ_j} . E_s — центральный элемент в k_1N_1 , но не центральный элемент в kN, поэтому, если $\{\beta \mod N_1\} = N/N_1, \ \beta \equiv N$, то $\beta \not\equiv T$. Значит, θ коммутирует с T и $T_1 = T \otimes k_0(\theta)$.

С другой стороны, как показано в [1], $Ae_{\chi_j} \approx (D_A e_{\chi})_f$. Элементы E_s — идемпотенты в алгебре Ae_{χ_j} и поэтому, приведенные к диагональному виду, они будут изображаться матрицами, имеющими по диагонали f/p единиц и остальные нули. Значит, $T \approx D_A e_{\chi_j}$.

Итак, $Be_{\chi_j} \approx (D_A e_{\chi_j} \otimes k_0(\theta))_f$ и следовательно, для того, чтобы Be_{χ_j} было матричной алгеброй порядка fp, необходимо и достаточно чтобы $k_0(\theta)$ было полем разложения для алгебры $D_A e_{\chi_j}$.

Таким образом, доказана

Теорема 1. Пусть при всех предположениях [1] k — поле разложечия для неабелевой группы N, D_A не является матричной алгеброй порядка p и пусть ие_x \neq 0 для e_x вида I. Тогда для исчезновения второго препятствия задачи (1) необходимо и достаточно, чтобы $B\hat{e}_x$ было матричной алгеброй порядка fp для каждого \hat{e}_x . Это в свою очередь равносильно для e_x вида I тому, что $\hat{k}_x[a_{\hat{\chi}}, v_{\hat{\chi}}]$ — матричная алгебра порядка p, а для e_x вида II тому, что $k_0(\theta)$ — поле разложения для $D_A e_x$.

2. Пример

В качестве примера рассмотрим задачу с ядром $N = \{\alpha, \beta\}, \alpha^4 = \beta^2 = 1, \alpha^\beta = \alpha^3; G = \{\gamma, \alpha, \beta\}, \gamma^2 = \alpha^2, \alpha^\gamma = \alpha^3, \beta^\gamma = \beta\alpha; F = = \Gamma(k_0(\gamma-1)/k_0) = \{s\}, s = \varphi(\gamma).$

Непосредственная проверка показывает, что исбор минимальных дентральных идемпотентов алгебры kN есть

MOG	$1 + a^2$	$1+\alpha$	$1+\beta$		1+0	a^2 1+ a	$1-\beta$	
$e_1 = \cdot$	2	2	2	,	2 2	2	2	• •
$e_3 = -$	$1 + \alpha^{2}$	$1 - \alpha$	$1+\beta$	$-, e_4 = -$	e 1+0	$a^2 1 - \alpha$	$1 - \beta$	
	2	2	2		2	2	2	3

 $e_5 = \frac{1-\alpha^2}{2}$. Как видим, идемпотенты e_1 , e_2 , e_3 , e_4 вида I, а e_5 вида II.

Пусть $G_i = \{g \in G \mid e_i^g = e_i\}$ и $k_{e_i} = k^{G_i}$, $\hat{G}_i = \{g \in G \mid e_i^g = e_i^{u^k}, k = 0, 1\}$, $\hat{k}_{e_i} = k^{\hat{G}_i}, i = 1, ..., 4$. Тогда $G_{1,2} = \hat{G}_{1,2,3,4} = G$, $G_{3,4} = N$; $k_{e_{1,2}} = \hat{k}_{e_{1,3}} = k_0$, $k_{e_{2,4}} = k_0 (\sqrt{-1}), \hat{k}_{e_{1,4}} = k_0$. В рассматриваемом примере $v = q^{1+\psi}\mu = (\sum_{a \in N} (1+m_{\gamma a}^{-1}))^{1+\psi}\mu =$ $= 8(1+m_{\gamma}^{-1})^{1+\psi}\mu$. Как нетрудно проверить, $l_{\gamma} = \frac{1+\alpha^2}{2} + \beta \frac{1-\alpha}{2} \frac{1-\alpha^2}{2}$ удовлетворяет условию согласности. Вычисления показывают, что $m_{\gamma} =$ $= l_{\gamma}^{-1} l_{\gamma}^{\psi} \lambda_{\gamma} = \alpha^2$. Итак, $v = 16\mu \frac{1+\alpha^2}{2}$. Значит, $\hat{v}_{1,2} = \hat{v}_{3,4} = 16\mu$, $\hat{v}_5 = 0$. Таким образом, идемпотенты вида I дают условие исчезновения второго препятствия: $\theta \in Nmk_0(\sqrt{-1})/k_0$, а идемпотент $e_5 : k_0(\theta)$ — поле разложения для алгебры $D_A e_5$, что согласуется с результатами [⁶] и других работ Б. Б. Лурье. Как показано в работах Б. Б. Лурье, это условие равносильно тому, что —1 есть сумма четырех квадратов в поле k_0 .

3. Следствия для полей алгебраических чисел

Согласно [7], второе препятствие задачи с абелевым ядром определяется набором циклических алгебр над подполями поля k. Там же установлено, что для разрешимости задачи погружения с абелевым ядром локальных полей условие согласности необходимо и достаточно. В работе [⁸] на основании этих двух фактов второе препятствие той же задачи, но для полей алгебраических чисел, вычисляется в форме инвариантов.

В [9] установлено, что для разрешимости задачи погружения с произвольным ядром локальных полей условие согласности необходимо и достаточно, но только в случае неабелева ядра накладывается существенное ограничение, состоящее в том, что число образующих группы G равно числу образующих группы F. Исчезновение второго препятствия для задачи с неабелевым ядром порядка p^n , как мы видели, сводится к задаче согласования циклических алгебр и к тому, что $k_0(\theta)$ — поле разложения для $D_A e_{\chi}$. Таким образом, в одной своей части условие исчезновения второго препятствия для задачи с неабелевым ядром совпадает по форме с тем же условием для задач с абелевым ядром.

По работе [⁸] можно непосредственно проследить, что задача согла-. сования циклических алгебр для случая неабелева ядра точно так же сводится к обращению в единицу всех корневых функций, определение корневых функций см. там же.

Итак, имеем

Следствие 1. Пусть при всех предположениях теоремы 1 k — поле алгебраических чисел, пусть также число образующих группы G равно числу образующих группы F. Тогда для исчезновения второго препятствия задачи (1) необходимо и достаточно, во-первых, обращение в единицу всех корневых функций и, во-вторых, чтобы $k_0(\theta)$ было полем разложения для $D_A e_{\chi}$.

Так же по [⁸] прослеживается

Следствие 2. Если при всех предположениях следствия 1 наибольший делитель чисел $g(\mathfrak{p})$ (см. [⁸]), где $\mathfrak{p} \Subset k_0$ — произвольный простой дивизор, то циклические алгебры, возникшие из задачи погружения (1), всегда можно согласовать.

Точно так же можно сформулировать другие следствия, соответствующие аналогичным утверждениям [⁸].

В заключение отметим, что на данную работу и на работу [1] оказали большое влияние в идейном отношении работы [10, 11] и работы Б. Б. Лурье.

ЛИТЕРАТУРА

- Полевицкая О. Изв. АН ЭССР. Физ. Матем., 32, № 1, 46—50 (1983).
 Лурье Б. Б. Математич. заметки, 2, № 3, 233—238 (1967).
- Кэртис Ч., Райнер И. Теория представлений конечных групп и ассоциативных алгебр. М., «Наука», 1969.
- 4. Херстейн И. Некоммутативные кольца. М., «Мир», 1969.

- Джекобсон Н. Теория колец. М., ИЛ, 1947.
 Лурье Б. Б. Тр. МИАН, 80, 98—101 (1967).
 Дёмушкин С. П., Шафаревич И. Р. Изв. АН СССР, сер. матем., 23, № 6, 823—840 (1959).
- 8. Дёмушкин С. П., Шафаревич И. Р. Изв. АН СССР, сер. матем., 26, № 6, 911—925 (1962)
- 9. Лурье Б. Б. Записки науч. семинаров ЛОМИ, 31, 106-114 (1973).
- 10. Шмидт Р. А., Яковлев А. В. Вестник ЛГУ, сер. мат., мех., астр., 13, вып. 3, 137-140 (1963).
- 11. Фаддеев Д. К., Шмидт Р. А. Вестник ЛГУ, сер. мат., мех., астр., 19, вып. 4, 36-43 (1959).

Всесоюзное аэрологическое научно-производственное объединение «Аэрогеология» Министерства геологии СССР

Поступила в редакцию 23/IV 1985

O. POLEVITSKAJA

SUVALISE pⁿ JÄRKU TUUMAGA SISESTUSÜLESANDE TEISE TÕKKE ARVUTAMISEST

Käesolev töö on eelmise kirjutise [1] järg. On esitatud täpsustused eelmise töö kohta, toodud näide teise takistuse arvutamisest ning formuleeritud järeldused algebraliste arvude väljade puhuks.

O. POLEVITSKAYA

ON THE EMBEDDING PROBLEM WITH AN ARBITRARY KERNEL OF ORDER pn

The paper is a sequel to [!]. Here we present some comments to [!]. An instance of calculating a second obstacle is given. It is followed by the deductions for the fields of algebraic numbers.