EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FOOSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1984, 33, 3

https://doi.org/10.3176/phys.math.1984.3.16

УДК 532.517.4

Ф. КАПЛАНСКИЙ

О ДИФФУЗИИ КРУГОВОЙ ВИХРЕВОЙ НИТИ

F. KAPLANSKI. UMARA KEERISNIIDI DIFUSIOONIST

F. KAPLANSKI. ON THE DIFFUSION OF THE CIRCULAR VORTEX LINE

(Представил И. Эпик)

Рассматривается аналог классической задачи о диффузии прямолинейной вихревой нити с целью описания движения кольцевого вихря. Перенос завихренности ζ описывается уравнением

$$\frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial r} (v\zeta) + \frac{\partial}{\partial x} (u\zeta) = v^* \left[\frac{\partial^2 \zeta}{\partial x^2} + \frac{\partial^2 \zeta}{\partial r^2} + \frac{q}{r} \frac{\partial \zeta}{\partial r} - \frac{q\zeta}{r^2} \right], \quad (1)$$

которое при q = 1 соответствует осесимметричной задаче, а при q = 0 — плоской; x, r — оси цилиндрической системы координат при q = 1 или оси декартовой системы при q = 0. Функция тока введена формулами

$$u = \frac{1}{r^q} \frac{\partial \psi}{\partial r} - V(t), \quad v = -\frac{1}{r^q} \frac{\partial \psi}{\partial x}$$

и может быть найдена как решение уравнения Пуассона

$$-\zeta r^{q} = \frac{\partial^{2} \psi}{\partial x^{2}} + \frac{\partial^{2} \psi}{\partial r^{2}} - \frac{q}{r} \frac{\partial \psi}{\partial r}.$$
 (2)

Здесь V(t) — скорость вихревого кольца, равная $\frac{dx_0(t)}{dt}$, где $x_0(t)$ — пройденное вихрем расстояние.

Начальное условие определяется условиями образования вихревого кольца или вихревой пары: при t = 0 функция $\zeta(r, x, 0)$ равна нулю всюду, кроме точки r = a, где она бесконечна (круговая вихревая нить радиуса a при q = 1 или две противоположно направленных прямолинейных вихревых нити на расстоянии 2a при q = 0).

Краевые условия

$$\begin{aligned} \zeta = \psi = 0 \quad \text{при} \quad r = 0 \quad (\text{условие симметрии}), \\ \zeta, \psi \to 0 \quad \text{при} \quad x^2 + r^2 \to \infty. \end{aligned} \tag{3}$$

Интегрируя (1) при условиях (3) получим условие сохранения

$$\frac{(2\pi)^{q}}{2} \int_{-\infty}^{\infty} \int_{0}^{\infty} r^{q+1} \zeta(r, x, t) dx dr = B.$$
(4)

Рассматриваются две модели.

I. Ламинарное вихревое кольцо, когда v^{*} = v — коэффициент молекулярной вязкости.

II. Турбулентное вихревое кольцо, когда $v^* = v_* t^{-3-q}$, где $v_* -$ постоянная величина, которая должна определяться сравнением результатов расчета и эксперимента. Здесь зависимость от времени для коэффициента турбулентной вязкости, предложенная для стадии автомодельного развития вихря [¹], формально распространена и на начальную стадию его развития.

В развитие результатов А. Калтаева [²] выпишем точное решение осесимметричной и плоской задачи для І и ІІ моделей в пренебрежении конвекцией относительно движущегося вихря (решение найдено методом. разделения переменных)

$$=At^{-\alpha} e^{-\frac{(x-x_0(t))^2+r^2+a^2}{2p}} f\left(\frac{ra}{p}\right)$$
(5)

Выражения a, p, f и A приведены в таблице.

q	Модель	α	p	f	Α
0	I	1	2vt	sh(m)	Β/4πνα
0	II	2/3	$3v_{*}t^{2/3}$	sh(m)	B/6πν _* a
1	I	3/2	2vt	$I_1(m)$	$B/4 (\pi v)^{3/2a}$
1	II	3/4	$4v_{*}t^{1/2}$	$I_1(m)$	$B/(2\pi v_*)^{3/2}a$

Здесь I_1 — модифицированная функция Бесселя, A определяется условием нормировки (4). При малых значениях $\frac{a}{\sqrt{p}}$ для $r \leq ca$ (c — любое конечное число), используя разложения в ряды $I_4\left(\frac{ra}{p}\right)$ и $e^{-\frac{a^2}{2p}}$, получим приближение (5), совпадающее с ранее найденными автомодельными решениями [³⁻⁵]

$$\zeta = At^{-\alpha} e^{-\frac{(x-x_0(t))^2+r^2}{2p}} \left(\frac{ra}{4p} + 0\left(c\left(\frac{a^4}{8p^2}\right)\right)\right).$$
(6)

При больших значениях $\frac{a}{\sqrt{p}}$ для $r \ge \frac{a}{c}$ при использовании асимптотического представления $I_1\left(\frac{ra}{p}\right)$ имеем другое приближение (5)

$$\zeta = At^{-\alpha} e^{\frac{(x-x_0(t))^2 + (r-a)^2}{2p}} \sqrt{\frac{p}{2\pi ra}} \left(1 + 0\left(\frac{cp}{a^2}\right)\right).$$
(7)

Радиальные координаты характерной точки максимума вихря из (6) и (7) определяются по формулам

$$r_{m} = \sqrt{p}, \qquad (8)$$

$$a = \frac{a}{2} + \sqrt{\frac{a^{2}}{4} - \frac{p}{2}}.$$

Таким образом, в явлении диффузии круговой вихревой нити в безграничной жидкости можно выделить две стадии, описываемые выраже-

8 ENSV TA Toimetised. F * M 3 1984

Изменение линейного решения с течением времени. 1 - t = 0, 1,γ=10^{-2/3} (описывается приближением (6)); 2 — t=1, $\gamma=1$; 3 — t=10, $\gamma=10^{-2/3}$ (описываются приближением (7); модель I, q=1, v=0,5).

ниями (7) и (6). В первой из них резко выраженная тороидальная структура вихря развивается неавтомодельно. Во второй стадии происходит автомодельное развитие формы вихря при потере тороидальности. Аналогичная ситуация сохраняется и для плоской задачи. Переход вихря из первой стадии во вторую (изменение распределения завихрен-

ности с увеличением параметра $\frac{a}{\sqrt{p}}$) иллюстрирует рисунок. Концентрированное распределение завихренности (кривая 1) согласуется с единственным детальным экспериментальным исследованием кольце-

вого вихря при использовании лазерного доплеровского измерителя, определяющего две компоненты скорости [6]. Отметим, что найденное решение (5) является решением полной задачи (1)-(4) при

для первой модели [³] и при v_{*} → ∞ для второй модели [⁵].

ЛИТЕРАТУРА

- 1. Луговцов А. А., Луговцов Б. А., Тарасов В. Ф. Динамика сплошной среды, вып. III, 50—60 (1969). 2. Калтаев А. В кн.: Динамика сплошной среды. Алма-Ата, КазГУ, 1982, 63—70. 3. Ершин Ш. А., Калтаев А. В кн.: Прикладная механика. Применение математиче-
- ских методов в естествознании. Алма-Ата, КазГУ, 1979, 164-169.
- 4. Луговцов Б. А. В кн.: Некоторые проблемы математики и механики. М., «Наука», 1970, 182-189.
- 5. Капланский Ф., Эпштейн А. Изв. АН ЭССР. Физ. Матем., 22, № 4, 386—393 (1973). 6. Sulivan, J. P., Widnall, S. E. AIAA Journal, 11, № 10, 1384—1389 (1973).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 7/IX 1983