LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОР ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS 1984, 33. 3

https://doi.org/10.3176/phys.math.1984.3.15

УДК 519.2.24

В. ОЛЬМАН

ТОЧЕЧНАЯ МИНИМАКСНАЯ ОЦЕНКА СЛУЧАЙНОЙ ВЕРОЯТНОСТИ ПРИ ОГРАНИЧЕНИЯХ НА АПРИОРНОЕ РАСПРЕДЕЛЕНИЕ

- V. OLMAN. JUHUSLIKU TÕENÄOSUSE MINIMAKS PUNKTHINNANG KITSENDATUD APRIOORSE JAOTUSE KORRAL
- V. OLMAN. POINT MINIMAX ESTIMATOR OF A RANDOM PROBABILITY UNDER RESTRIC-TIONS ON A PRIORI DISTRIBUTION

(Представил Н. Алумяэ)

Решаемая здесь задача формулируется следующим образом. Пусть x_1, x_2, \ldots, x_n — независимые реализации биномиальной случайной величины X, т. е. P(X = 1) = p, P(X = 0) = 1 - p. Параметр p тоже является случайной величиной, про распределение которой известно лишь, что оно принадлежит некоторому классу \mathcal{F} . Риск используемой процедуры $\delta(x_1, x_2, \ldots, x_n)$ при оценивании параметра p имеет вид

$$R(\delta,p) = E_p(\delta(x_1, x_2, \ldots, x_n) - p)^2.$$

Задача заключается в нахождении такой *F*-допустимой процедуры оценивания δ_0 [¹], что

$$\inf_{\delta \in B_{\mathcal{F}}} \sup_{0 \le p \le 1} R(\delta, p) = \sup_{0 \le p \le 1} R(\delta_0, p), \tag{1}$$

где $B_{\mathcal{F}}$ — множество всех \mathcal{F} -допустимых оценок, т. е. таких, для которых не существует δ^* со свойством $\int_0^1 R(\delta, p) dF(p) \ge \int_0^1 R(\delta^*, p) dF(p)$ $\forall F \in \mathcal{F}$ и со строгим неравенством хотя бы для одного $F \in \mathcal{F}$. В настоящей работе эта задача решается для класса \mathcal{F} , описанного в $\sim [1]$, т. е. $G \in \mathcal{F}$, если

1) $G(p+0)+G(1-p)=1, 0 \le p \le 1,$

2) G(p) вогнута на интервале (0, 1/2).

Как показано в [1], класс \mathcal{F} -допустимых процедур совпадает с множеством байесовских оценок относительно элементов класса \mathcal{F} . Таким образом, с учетом того, что $y = \sum_{i=1}^{n} x_i$ — достаточная статистика, общий вид оценок из класса $B_{\mathcal{F}}$ следующий [²]:

$$\delta_{F}(y) = \frac{\int_{0}^{1} p^{y+1} (1-p)^{n-y} dF(p)}{\int_{0}^{1} p^{y} (1-p)^{n-y} dF(p)}, \quad F \in \mathcal{F},$$
(2)

т. е. δ_F — это оценка, байесовская относительно распределения F. Теорема. Решением задачи (1) при $n \ge 4$ является оценка $\delta^*(y) = = \frac{y+1}{n+2}$, байесовская относительно равномерного на [0,1] распределения $F_0(p)$, т. е. $F_0(p) = 0$, $p \le 0$, $F_0(p) = p$, $0 \le p \le 1$. Доказательство. Прямые вычисления показывают, что

$$R(\delta^*, p) = \frac{p^2(4-n)+p(n-4)+1}{(n+2)^2}, \quad \text{и следовательно,}$$
$$\sup_{0 \le p \le 1} R(\delta^*, p) = R(\delta^*, 1/2).$$

Таким образом, для доказательства теоремы достаточно показать, что

$$R(\delta_F, 1/2) \ge R(\delta^*, 1/2) \quad \forall F \in \mathcal{F}.$$
(3)

Из вида (2) F-допустимых оценок получаем

$$\delta_{F}(y) = \frac{\int_{0}^{1/2} \left[p^{y+1} (1-p)^{n-y} + (1-p)^{y+1} p^{n-y} \right] dF(p)}{\int_{0}^{1/2} \left[p^{y} (1-p)^{n-y} + (1-p)^{y} p^{n-y} \right] dF(p)} .$$
(4)

Используя это представление, легко убедиться, что для всех $F \Subset \mathcal{F}$ имеет место равенство

$$\delta_F(y) + \delta_F(n-y) = 1, \quad y = 0, \ 1, \ \dots, \ n.$$
 (5)

Теперь покажем, что

$$\delta_F(y) \ge \delta^*(y) \ge 1/2, \quad y \ge n/2, \quad \forall F \in \mathcal{F}.$$
 (6)

То, что $\delta^*(y) \ge 1/2$ при $y \ge n/2$ легко следует из самого вида оценки $\delta^*(y)$. Для доказательства левого неравенства в (6), используя формулу (4), перепишем его следующим образом:

$$\int_{M} \int u_{y}(p) v_{y}(s) dF(p) ds \ge \iint_{M} v_{y}(p) u_{y}(s) dF(p) ds,$$

$$M = \{ (p,s) \colon 0 \le p \le 1/2, \ 0 \le s \le 1/2 \}, \ u_{y}(p) =$$

$$(7)$$

где

$$= p^{y+1}(1-p)^{n-y} + (1-p)^{y+1}p^{n-y}, \ v_y(p) = p^y(1-p)^{n-y} + p^{n-y}(1-p)^y.$$

В силу симметрии множества M относительно прямой p = s в неравенстве (7) можно перейти к интегрированию по множеству $M_{1/2} = = \{(p,s): 0 \le p \le 1/2, 0 \le s \le p\}$:

$$\int_{M_{1/2}} [u_y(p) v_y(s) dF(p) ds + u_y(s) v_y(p) dF(s) dp] \ge$$

$$\geq \int_{M_{1/2}} [u_y(s) v_y(p) dF(p) ds + v_y(s) u_y(p) dF(s) dp].$$
(8)

Группируя подинтегральные выражения, получаем, что для доказательства (6) достаточно показать справедливость неравенства

 $u_{y}(p)v_{y}(s) [dF(p)ds - dF(s)dp] \ge v_{y}(p)u_{y}(s) [dF(p)ds - dF(s)dp]$ для $0 \le s \le p \le 1/2$.

Выражение в квадратных скобках неположительно, так как $F \subset \mathcal{F}$, и следовательно, $\frac{dF(t)}{dt}$ почти везде существует и не возрастает при 0 < t < 1/2 [¹]. Таким образом, осталось доказать, что

$$u_y(p)v_y(s) \leqslant v_y(p)u_y(s), \quad 0 \leqslant s \leqslant p \leqslant 1/2, \tag{9}$$

или, что $u_y(p)/v_y(p)$ не возрастает по $p, 0 \le p \le 1/2$. Простыми преобразованиями получаем

$$u_y(p)/v_y(p) = \frac{1}{1+t} \frac{t^{s+1}}{t^s+1},$$
(10)

где t = p/(1-p), s = 2y - n.Дифференцируя (10) по р, получаем

$$\frac{d}{dp} \frac{u_{y}(p)}{v_{y}(p)} = \frac{1-2p}{1-p} \frac{t^{2s}-1+st^{s-1}[t^{2}-1]}{(t^{s}+1)^{2}(1+t)^{2}},$$

а так как $p \leq 1/2$ и y < n/2, то $s \ge 0$ и $0 \leq t \leq 1$, откуда $t^{2s} - 1 \leq 0$, $t^2 - 1 \leqslant 0$, и следовательно,

$$\frac{d}{dp} \frac{u_y(p)}{v_y(p)} \leqslant 0,$$

что эквивалентно неравенству (9), а значит, и неравенству (6). Отметим, что в силу равенства (5) и неравенств (6)

$$\delta_F(y) \leq \delta^*(y) \leq 1/2$$
 при $y < n/2 \quad \forall F \in \mathcal{F}.$ (11)

Нетрудно убедиться в том, что независимо от четности числа п

$$R(\delta_F, 1/2) - R(\delta^*, 1/2) = \sum_{h=0}^{\left[\frac{n-1}{2}\right]} \left[\left(\delta_F(k) - \frac{1}{2} \right)^2 - \left(\delta^*(k) - \frac{1}{2} \right)^2 \right] C_n^h/2^n,$$

 $\left[\frac{n-1}{2}\right]$ — целая часть числа $\frac{n-1}{2}$, откуда имеем в силу нерагде венств (6)

$$\left(\delta_F(k)-\frac{1}{2}\right)^2-\left(\delta^*(k)-\frac{1}{2}\right)^2=\left(\delta_F(k)-\delta^*(k)\right)\left(\delta_F(k)+\delta^*(k)-1\right)\geq 0,$$

что и доказывает неравенство (3).

ЛИТЕРАТУРА

1. Ольман В. Изв. АН ЭССР. Физ. Матем., 33, № 3, 285—290 (1984). 2. Вальд А. Статистические решающие функции. — В кн.: Позиционные игры. М., «Наука», 1967, 300-522.

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 26/Х 1983