EESTI NSV TEADUSTE AKADEEMIA TOIMĒTISED. FUUSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS 1984, 33, 3

УДК 535.37; 535.357.54

A. HAAV, K. HALLER, Lyubov REBANE

LOW-TEMPERATURE RESONANCE RAMAN SCATTERING IN KCIO₄: MnO₄-

(Presented by K. K. Rebane)

1. Introduction

The resonance Raman scattering spectra (RRS) of a small impurity molecule in a crystal host seem to be a rather simple case suitable for a quantitative comparison with the theory [1-4]. In general accordance with the theory the RRS spectra of I_{3^-} , Se_2^- , MnO_4^{2-} and MnO_4^- molecules in alkali halide crystals [5-9] on excitations within the molecular absorption band have been observed to contain sequences of overtones of a totally symmetric molecular mode. Also the intensities of RRS lines reveal nonmonotonic irregular dependence on the scattering order and are strictly dependent on the excitation frequency. The qualitative agreement with the calculated probabilities of RRS transitions has been achieved within the frames of a simple model [10], which considers a single excited electronic state, and a scattering, concerning a single totally symmetric vibrational mode represented by a harmonic oscillator. The same mode forms a progression of vibronic bands in the absorption, which is due to the shift of the oscillator's equilibrium distance on the electronic transition. In the Condon approximation RRS line intensities are governed by the Franck-Condon principle and can be calculated easily. The best agreement with the calculations has been obtained by R. J. H. Clark and B. Stewart [11] for the MnO4- ion doped into KClO₄. The resonance Raman excitation profiles (REP) have been measured for the lines of $v_1(A_1)$, $2v_1$ and $3v_1$, at 300 K and found to be very close to the calculated ones throughout the entire range of the ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ absorption band, also taking into account the oscillator frequency shift.

The RRS and REP should be highly sensitive to electron-vibrational interactions in the molecule [¹²], and, therefore, the observed accordance between the experimental results and calculations based on the Franck-Condon scattering mechanism, which does not include any vibronic coupling, seems rather disappointing.

On the other hand, for S_2^- in KI the intensities of the molecular mode overtones measured at 5 K and excitation in resonance with the degenerated ${}^2\Pi_u \leftarrow {}^2\Pi_g$ electronic transition were in a drastic disagreement with the simple model calculations [13]. The molecular absorption band of S_2^- at LHe temperature possess the structure of narrow nophonon lines (NPL) and phonon sidebands, and on tuning the excitation frequency over the NPL we have observed a minimum (an antiresonance) in the low-temperature REP at the NPL frequency [14]. It was expected that the validity of the simple model for the totally symmetric mode of a degenerated electronic state was connected with the presence of the broad, overlapping vibronic bands in absorption.

4 ENSV TA Toimetised. F * M 3 1984

309

Fig. 1. Unpolarized absorption band of ${}^{1}T_{2} \leftarrow {}^{-1}A_{1}$ transition of MnO^{-}_{4} impurity ion in the KCIO₄ crystal at 5 K. The arrows λ_{1} to λ_{6} represent the laser lines used for the excitations.

To understand better the complexities arising in low-temperature RRS spectra we have studied in this work the RRS spectra of MnO₄- in KClO₄ at 5 K at different excitation frequencies. This system was chosen because adiabatic its potentials and Franck-Condon overlapping integrals had been calculated in [11] and the results corresponded to the high temperature experimen-, tal data. At 6 K the ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ absorption band of MnO₄- reveals an additional structure, which is due to the splitting of the degenerated electronic state by the crystal field of C_8 symmetry and to the low symmetry molecular vibrations of $v_2(E)$ and $v_3(F_2)$ [15].

On a resonance excitation the low-temperature spectrum should contain, besides the RRS, other components of resonant secondary emission: ordinary luminescence (OL) and hot luminescence (HL) [¹⁶]. For MnO₄- no luminescence has been reported. The search for nontotally symmetric modes and their overtones in the RRS spectrum is also of interest, because their appearance will evidence that the vibronic coupling takes place [¹²].

2. Experimental

Single crystals of about $2 \times 2 \times 3$ mm³ size were grown from a water solution of KClO⁴ with 5 mol% of KMnO₄.*

The excitation was performed by the lines of an argon ion laser (Spectra Physics model 171) and by a dye laser on Rhodamin 110. The position of various excitations in the molecular absorption band is shown in Fig. 1. The laser beam was directed at $\sim 30^{\circ}$ angle to the crystal surface and the reflected beam was recorded to control the change of the reflection coefficient on a possible crystal surface damage under excitation. To decrease the distruction of the crystal surface, the laser power (measured on the input cryostat window) was kept 60–70 mW. The spectra were recorded in the 90° geometry from the same crystal surface with a double spectrometer Spex 1402 with holographic gratings of 1800 mm⁻¹. The signal was detected with a photon counting system and multichannel analyzer LP 4900.

* The authors are thankful to V. Nomm for growing the crystal.

Fig. 2. A part of the first order Raman scattering spectra of KClO₄: MnO₄- at 5 K under the excitations $\lambda_2 = 5145$ Å (a) and $\lambda_1 = 5531$ Å (b). The intensities of (a) and (b) are normalized to the intensity of the nonresonant v_1 mode of KClO₄. The structure of a weak luminescence got by a compressing the abstass coordinate from the spectrum (a) without Raman lines is shown in insert (the noise level is indicated).

The measured integral intensities of Raman lines on different excitations were corrected to the instrumental response and compared with the intensity of the $v_1(A_1)$ fundamental of the KClO₄ host crystal.

The absorption spectrum was recorded by using an Acta MVII.

3. Results and discussions

The full secondary emission spectrum of the crystal of $KClO_4: MnO_4^$ was recorded at 5 K under two excitations: by the line λ_1 of the dye

4*

Table 1

Raman frequencies (cm ⁻¹)		Assignments		
λ_1 -excitation	λ_2 -excitation	to KClO ₄	to MnO ₄ -	
355			$v_2(E)$	
393	395			
390 407	408		$\gamma v_4(\Gamma_2)$	
465	466	$v_{\alpha}(E)$	J .	
629	629	1		
-	636	$v_4(F_2)$		
CIC .	639			
040 708	709			
-	721			
788	786)	
793	. 792		$2v_4(F_2)$	
	802 813			
853	853		v. (A.)	
-	916)	
- 11.00	922		(E)	
-	925		V3(12)	
020	930	The states	,	
939 945	945	$v_1(A_1)$		
-	1091	(1((*1))) ні	
	1130		f IIL	
1247	-		(1) 1 (E)	
1249	T		$v_1(A_1) + v_4(T_2)$	
1209			$v_1(A_1) + 2v_4(F_2)$	
1703	1701		$2v_1(A_1)$	
2098			$2v_1(A_1) + v_4(F_2)$	
2549	2547		$3v_1(A_1)$	

Measured Raman frequencies and their assignments in the spectra of KCIO₄: MnO₄on resonance excitations by $\lambda_1 = 5531$ Å and $\lambda_2 = 5145$ Å lines

generation, which falls in with the maximum of the first absorption band, and by the Argon line λ_2 which brings the molecule to the state somewhat above the level $v_{00}+v_1+2v_3$ [¹⁵] (see Fig. 1). The spectrum contains the Raman scattering of KClO₄ and the resonance secondary emission of MnO₄- impurity. The parts containing the first-order Raman scattering are shown in Fig. 2, and the frequencies of all detected Raman lines are given in Table 1.

The fundamentals of infrared and Raman active crystal vibrations for KClO₄ in the low-temperature phase of the symmetry $D_{2h}^{16}(z=4)$ were discussed in [¹⁷]. According to [¹⁷], the strong line at 945 cm⁻¹ pertains to the $v_1(A_1)$ intramolecular stretching mode of ClO₄- and we use it as an internal intensity standard. We observed an unsplit line at the frequency of $v_2(E)$ and three crystal-field-split lines of $v_4(F_2)$ mode but we observed no lines in the region of $v_3(F_2)$. One extra line near v_1 mode at 939 cm⁻¹ possibly belongs to nonequivalent groups of ClO₄- in the crystal cell.

The lines belonging to MnO_4^- were interpreted on the basis of the available fundamental modes of MnO_4^- measured in infrared spectra of alkali halide pellets doped with $KMnO_4$ [¹⁸]. We observed $v_1(A_1)$ mode at 853 cm⁻¹, three components of the asymmetric bending mode $v_4(F_2)$ at 395, 398, and 408 cm⁻¹, and three components of the asym-

metric stretching mode $v_3(F_2)$ at 916, 922, and 925 cm⁻¹. The weak line at 355 cm⁻¹ is possibly the $v_2(E)$ mode [¹⁹].

As a result of the resonant enhancement the combined mode transitions as well as overtones were also observed. The progression up to the fourth overtone was observed for the totally symmetric mode v_1 of the maximal Stokes shift. The anharmonicity constant x_{11} for this mode was measured 3.5 cm⁻¹. The RRS lines of the first overtone v_4 and the mode combinations $v_1 + v_4$, $v_1 + 2v_4$ and $2v_1 + v_4$, were also observed, resulting the anharmonicity constant $x_{44}=4$ cm⁻¹. We have not observed the combinations nv_1+v_3 which were detected at the resonance excitation of MnO₄⁻⁻ ion in aqueous solution [¹⁹] and also in ¹⁸O-enriched solid solution of KMnO₄ in RbBr [²⁰].

The identified RS lines were observed on a rather weak background, which may be interpreted as luminescence. For MnO_4^- one can expect the luminescence transitions from the 0-level of the excited electronic state to the vibrational levels of the ground state. By compressing artificially the measured spectrum we were able to observe three broad maxima in the background emission at the excitation by λ_1 , whose frequencies are in agreement with the expected transition (see Table 2). These maxima evidently belong to the OL of MnO_4^- molecule observed first. As it should be exciting nearly 0–0 transition, we have the RRS emission at the frequencies $v_{ex} - nv_1$ and the OL emission at the frequencies $v_{00} - nv_1$, but because of the weakness of OL only bands with n=1 and 2 were observed.

The number of photons emitted in the transitions of RRS and OL is related as $T_2: T_1$, where T_2 is the phase relaxation time of the virtual excited state and T_1 is the energy relaxation time of the 0-level [¹⁶]. For MnO₄⁻⁻ the measured integral intensities of the RRS v_1 lines exceeded 20 times those of the OL band. This extremely weak OL evidences some specific situation with nonradiative transition for MnO₄⁻⁻. Taking the measured OL bandwidth Γ =65 cm⁻¹ as a homogeneous one, it gives the corresponding relaxation time of $T_1 \sim 10^{-13}$ s.

If one takes the probability of a dipole-allowed radiative transition $\sim 10^{3} \text{ s}^{-1}$, then the luminescence yield for MnO_{4}^{-} should be of the order of 10^{-5} , which coincides with the extremely weak OL observed. On the other hand, the broad OL bands may be of a phonon sideband origin and the NPL-s are not seen because of the small Debay-Waller factor Absence of the narrow NPL-s in the absorption spectrum may be related to their absence in OL but it may also be caused by an inhomogeneous broadening.

On λ_2 excitation a weak background emission was observed in the Stokes as well as anti-Stokes regions from v_{00} . In the spectra with a compressed background, a structure was measured in the anti-Stokes region that may be interpreted as a partly reabsorbed hot luminescence: the positions of two minima at 18860 and 18080 cm⁻¹ coincide with

Table 2

Transitions	Calc. frequency (cm ⁻¹)	Measured peak position (cm ⁻¹)	Intensity (imp/s)	Γ (cm ⁻¹)	
$\nu_{00} - \nu_1$	17250	{17150 17090	65	65	
$\nu_{00}-\nu_1-\nu_4$	16800	16780			
$v_{00} - 2v_1$	16350	16300	52	80	

Calculated and measured luminescence transitions for MnO₄⁻ ion in KClO₄ at 5 K under the excitation on the maximum of 0-0 absorption band

Fig. 3. Line shapes and intensities of the first four orders of RRS of v_1 mode of MnO_4^- on the excitation in the maximum of 0–0 absorption band. The halfwidths (after correction for instrumental broadening) are indicated.

two first maxima in absorption. We also observed two prominent lines at 18305 and 18344 cm⁻¹ with $\Gamma = 7$ cm⁻¹ which do not appear at λ_1 excitation and may therefore be identified as some HL transitions.

A sequence of the four RRS lines of the totally symmetric v_1 mode of MnO_4^- was observed at different excitations from λ_1 to λ_6 (see Fig. 1). The most intensive overtones were observed on the excitation by λ_1 in the maximum of 0—0 absorption band. Fig. 3 shows the RRS line shapes and intensities measured with narrow monochromator slits of 70μ to reveal homogeneous linewidths (HLW). Fig. 3 depicts the HLW-s after the instrumental linewidth is substracted. The anharmonic broadening of the RRS lines is clearly seen to increase with the order. For the first order $\Gamma \leq 0.16$ cm⁻¹ that estimates the lower limit for the anharmonic decay time T_1 to be ≥ 6 ps. The increase of HLW is roughly proportional to the vibrational quantum number, as it should be for the case of an anharmonic decay of a high frequency molecular mode into crystal phonons.

The relative integral intensities of the v_1 mode overtones measured at 5 K at different excitation frequencies are presented schematically in Fig. 4. A comparison is made to the same overtone intensities measured in [¹¹] on the same excitations, but at the temperature of 300 K. One can see the basic difference in the intensity distribution among overtones at 5 and 300 K, and as a result, the low-temperature intensities are in disagreement with the calculated probabilities [¹¹].

A possible quantitative understanding of the situation is based on the observed temperature dependence of the absorption spectrum. At 300 K the only resolved structure in the absorption is due to the v_1 mode with the halfwidth of the vibronic bands being 300 cm⁻¹. With such broad overlapping bands the calculated intensities of the n-th-order resonance scattering of v_1 mode, which take into account only the v_1 vibrational levels, were in excellent agreement with the experiment even if the excitation frequency was falling to the minimum between two vibronic transitions in absorption. In this case the greater part of the calculated intensity is caused by the so-called interference terms.

At low temperature vibronic bands become narrower and the additional structure has appeared. In accordance with the narrowing of the

Fig. 4. Relative integral intensities of the v_1 mode overtones at different excitation wavelengths at 5 K. Solid lines — present work, dashed lines — [¹¹] (comparison is made by equalizing the intensities of $2v_1$ mode on the λ_2 excitation).

bands the input from the interference terms decreases and the intensities calculated in the simple model become very sensitive to the excitation frequency shift from sharp resonances in absorption. For MnO_4^- the absorption at 5 K does not reveal NPL-s, and the linewidths of the v1 vibronic bands on the basis of [15] are $\Gamma \sim 60$ cm⁻¹. The excitations used (except λ_1) are essentially shifted from the v_1 absorption maxima and therefore cannot be described within the frames of the simple model. On excitation near the maximum (as in the case of λ_1 excitation) the observed intensities were in accordance with the theory. The calcula-tions taking into account the other modes are in progress.

REFERENCES

- Hizhnyakov, V., Tehver, I. Phys. status solidi (b), 21, 755 (1967).
 Tonks, D. L., Page, J. B. Chem. Phys. Lett., 66, 449 (1979).
 Ребане К., Хижняков В. Препринт FAI-28, Тарту, 1973.

- Ребане К., Кажнаков Б. Препринт ГАТ-26, Гарту, 1973.
 Champion, P. M., Albrecht, A. C. Ann. Rev. Phys. Chem, 33, 353 (1982).
 Martin, T. P. Phys. Rev. B, 13, 3617 (1976).
 Ребане Л. А., Хальдре Т. Ю. Письма в ЖЭТФ, 26, 674 (1977).
 Martin, T. P., Onari, S. Phys. Rev. B, 15, 1093 (1977).
 Максимова Т. И., Решетняк Н. В. Физ. твердого тела, 22, 1206 (1980).
 Максимова Т. И., Решетняк Н. В. Физ. твердого тела, 21, 2677 (1979).

Hizhnyakov, V., Tehver, I. Phys. status solidi (b), **39**, 67 (1970); **82**, K89 (1977).
 Clark, R. J. H., Stewart, B. J. Amer. Chem. Soc., **103**, 6593 (1981).
 Stebrand, W., Zgierski, M. Z. Resonance Raman Spectroscopy — a Key to Vibronic Coupling. — In: Excited States (ed. E. C. Lim). New York, London, Toronto, Sydney, San Francisco, Academic Press, 1979, 2—136.
 Rebane, L. A., Rebane, K. K. J. de Physique, **42**, C6-505 (1981).
 Pe6ane J. A., Xaas A. A. Физ. твердого тела, **24**, 2558 (1982).
 Holt, S. L., Ballhausen, C. J. Theoret. chim. Acta, **7**, 313 (1967).
 Rebane, K., Saari, P. J. Luminescence, **16**, 223 (1978).
 Галанов Е. К., Блодский И. А. Физ. твердого тела, **10**, 3392 (1968).
 Manzelli, P., Taddei, G. J. Chem. Phys., **51**, 1484 (1969).

Manzelli, P., Taddei, G. J. Chem. Phys., 51, 1484 (1969).
 Kiefer, W., Bernstein, H. J. Mol. Phys., 23, 835 (1972).
 Jubert, A. H., Varetti, E. L. J. Raman Spectrosc., 13, 63 (1982).

Academy of Sciences of the Estonian SSR. Institute of Physics

Received Dec. 5, 1983

Academy of Sciences of the Estonian SSR. Institute of Chemical Physics and Biophysics

A. HAAV, K. HALLER, Ljubov REBANE

MADALATEMPERATUURILINE RESONANTNE KOMBINATSIOONHAJUMINE KCIO4 : MnO4- KRISTALLIS

KClO₄ maatriksis on mõõdetud MnO₄− lisandiooni resonantse kombinatsioonhajumise (RKH) spektrid 5 K juures erinevatel ergastustel MnO₄− neeldumisribas ¹T₂→¹A₁. RKH võnkekorduste intensiivsusi on võrreldud kirjanduses leiduvate andmetega, mis on saadud 300 K juures. See on rahuldavas vastavuses lihtsa mudeliga, milles on arvestatud vaid ühte ergastatud elektronseisundit ning ühte täissümmeetrilist võnkenivood. Ebarahulday kooskõla 5 K juures on seletatav neeldumisspektri peenstruktuuriga madalatel temperatuuridel.

Esmakordselt on kindlaks tehtud MnO4- nõrk luminestsents ning antud hinnang faasi- ja energeetilise relaksatsiooni aegadele.

А. ХААВ, К. ХАЛЛЕР, Любовь РЕБАНЕ

НИЗКОТЕМПЕРАТУРНОЕ РЕЗОНАНСНОЕ КОМБИНАЦИОННОЕ РАССЕЯНИЕ В КРИСТАЛЛЕ КСІО4: MnO4

Спектры резонансного КРС МпО4- в кристалле КСЮ4 измерены при 5 К и возбуждении в полосу примесного поглощения ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$. Спектр содержит вибронную серию до 4-го обертона молекулярного колебания $v_{1}(a_{1})$, а также комбинированные частоты $v_1 + v_4$, $\dot{v}_1 + 2v_4$ и $2v_1 + v_4$, где $v_4(t_2)$ обнаруживает 3 компонента расщепления кристаллическим полем. Определены однородные ширины линий обертонов v_1 и ангармонические постоянные. Впервые обнаружена люминесценция и горячая люминесценция иона MnO₄-. Квантовый выход люминесценции оценен ~10-5.