EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÕIDE FÜÜSIKA * MATEMAATIKA. 1983, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ФИЗИКА * МАТЕМАТИКА. 1983, № 3

https://doi.org/10.3176/phys.math.1983.3.11

УДК 621.314.63

Т. ТОМСОН

КОММУТАЦИЯ ТИРИСТОРОВ В СИСТЕМЕ УПРАВЛЯЕМЫХ ВЫПРЯМИТЕЛЕЙ НА ОБЩИХ ЭЛЕМЕНТАХ

(Представил И. Эпик)

Введение

Процессы коммутации оказывают существенное влияние на работоспособность и внешние характеристики системы выпрямителей с общими элементами [1]. Ниже мы проанализируем эти процессы на системах различной конфигурации, тиристоры которых принадлежат разным регуляторам, независимо работающим в режиме разомкнутой системы автоматического регулирования. Ввиду независимости нагрузок и углов управления α тиристоры могут переключаться в произвольной последовательности. Для наглядности ограничимся рассмотрением I зоны работы полууправляемых выпрямителей [²], где процессы коммутации тиристоров и диодов не совпадают во времени. Рассмотрим два характерных случая фазового сдвига углов.

1. Подача запаздывающего управляющего импульса осуществляется вне интервала коммутации опережающего тиристора $\alpha'' > \alpha' + \gamma'_{T}$, где $\gamma_{T} -$ угол коммутации тиристора.

2. Подача запаздывающего управляющего импульса осуществляется в течение интервала коммутации опережающего тиристора $\alpha'' < \alpha' + \gamma'_{\tau}$. Частным случаем этого является синфазное управление двумя регуляторами $\alpha'' = \alpha'$.

Последовательность управления тиристорами в радиальных сетях не имеет значения, а в магистральных сетях, где тиристоры находятся ближе и дальше от источника энергии, оказывает существенное влияние на исход процесса. Сделаем одно методическое пояснение: всю систему мы представляем как совокупность пар, связанных условием последовательности переключения. Из большого числа коммутируемых тиристоров

Рис. 1. Схема радиальной сети с общей диодной группой.

мы можем выбрать любую такую пару, и все закономерности, выявленные для нее, будут действительны для системы в целом.

При анализе аппроксимируем тиристоры идеальными ключами, индуктивности считаем сосредоточенными и линейными, а сеть — симметричной как между фазами, так и между отдельными регуляторами. Символом «штрих» снабжаем элементы и параметры опережающего регулятора, а символом «два штриха» — запаздывающего. Для наглядности пользуемся «векторным» представлением выходного напряжения [²] $U_d(t) \in \{U_{CB} \dots U_{\pi} \dots U_{AC}\}$, которое представляет собой последовательность различных линейных напряжений, а для сокращения объема статьи — табличной формой описания тактов процесса коммутации. Более подробно рассматривается первый пример.

Подача управляющего импульса вне интервала коммутации опережающего тиристора в радиальной сети

Схема для анализа процесса коммутации показана на рис. 1; векторные диаграммы, дополнительные условия и дополнительные данные — в табл. 1.

I такт работы: $\omega t < \alpha'$. Обе нагрузки подключены к линейному напряжению U_{CB} посредством V'_5 , V_6 и V_5'' , V_6 соответственно.

II такт работы: $\alpha' < \omega t < (\alpha' + \gamma'_{\tau})$. Вентили V'_5 , V'_1 закорачивают фазы C и A на клеммах регулятора. Выходное напряжение опережающего регулятора описывается вектором $U'_d(II) := 3U_B \exp(j\pi)/2$. Посредством V_5'' вторая нагрузка подключена еще к C фазе, однако из-за короткого замыкания и коммутационного перепада напряжения на общей индуктивности рассеивания трансформатора L_s выходное напряжение запаздывающего регулятора уже не равняется линейному напряжению U_{CB} . Анализ показывает, что при индуктивности сети L_c модуль век-

Таблица 1

Takm	ωt	Включенные вентили	U'd	U _d *	Векторная диаграмма
1	wt <a'< td=""><td>Vs',V6,V5"</td><td>U_{CB}</td><td>U_{CB}</td><td>V's V's V's V's B</td></a'<>	Vs',V6,V5"	U _{CB}	U _{CB}	V's V's V's V's B
1	α'ς ωtς(α'+ y')	V'5 UV1', V6, V5*	<u>3</u> 08 e 177	$\frac{3}{2\cos x} U_B e^{j(\pi + x)}$ $x = \operatorname{arctg} \frac{1}{\sqrt{3}} \frac{1}{1 + L_s/L_c}$	
□	(∝'+y'')<ωt < ∝"	V1', V6, V3"	U _{AB}	U _{CB}	
17	∝"< wt <(«"+y")	V1', V6 , V5" U V1"	$\frac{3}{2\cos \varkappa} U_{B} e^{j(\pi - \varkappa)}$ $\varkappa = \operatorname{arctg} \frac{1}{\sqrt{3}} \frac{1}{1 + L_{s}/L_{c}}$	<u>3</u> 2∪ _B e ^{jπ}	
Ī	(α"+ g _T ")< ωt	V_{1}', V_{6}, V_{1}''	U _{AB}	U _{AB}	

Процесс ненакладывающейся коммутации в радиальной сети

тора, описывающего выходное напряжение запаздывающего регулятора, равен $U_d''(II) = 3U_B \exp j(\pi + \varkappa)/2\cos \varkappa$, где аргумент $\varkappa = \operatorname{arc} \operatorname{tg}(1/\sqrt{3})/(1 + L_s/L_c)$, т. е. на кривой выходного напряжения появляется коммутационный пик с γ'_{T} , амплитуда которого найдена ниже.

III такт работы: $(\alpha' + \gamma'_{\tau}) < \omega t < \alpha''$. Нагрузка опережающего регулятора подключена к линейному напряжению U_{AB} посредством вентилей V'_1 , V_6 , а нагрузка запаздывающего регулятора — к линейному напряжению U_{CB} посредством V_5'' , V_6 .

IV такт работы: $a'' < \omega t < a'' + \gamma_T''$. Вентили V_5'' и V'_1 вторично закорачивают фазы C и A на клеммах регулятора. Выходное напряжение запаздывающего регулятора описывается вектором $U_d''(IV) \coloneqq 3U_B \exp(j\pi)/2$. Посредством V'_1 нагрузка опережающего регулятора подключена к A фазе, однако из-за короткого замыкания и коммутационного перепада напряжения на L_s выходное напряжение не равняется линейному напряжению U_{AB} . Ввиду симметричности схемы модуль $U'_d(IV)$ равен вышеприведенному значению $(U'_d(II))$, аргумент отличается лишь знаком, так что фаза оказывается отстающей, т. е. на кривой выходного напряжения опережающего регулятора появляется коммутационный провал.

V такт работы: $\omega t > (\alpha'' + \gamma_{T}'')$. Обе нагрузки подключены к линейному напряжению U_{AB} посредством V'_{1} , V_{6} и V_{1}'' , V_{6} соответственно.

Симметричность провала и пика позволяет найти мгновенное значение коммутационных помех

$$u_h(t) = \frac{\sqrt{3}}{2} \frac{U_{\pi}}{\cos \varkappa} \cos \left(\omega t + \varkappa\right) - U_{\pi} \cos\left(\omega t + \frac{\pi}{6}\right),$$

среднее значение которых составляет

$$U_{dh} = \frac{3}{2} \frac{U_{\pi}}{\pi} \int_{\alpha}^{\alpha + \gamma'_{\tau}} \left(\frac{\sqrt{3}}{2} \frac{1}{\cos \varkappa} \cos \left(\omega t + \varkappa \right) - \cos \left(\omega t + \frac{\pi}{6} \right) \right) d\omega t =$$
$$= \frac{3}{4} \frac{U_{\pi}}{\pi} \left(\sqrt{3} \operatorname{tg} \varkappa - 1 \right) \left(\cos \left(\alpha + \gamma'_{\tau} \right) - \cos \alpha \right).$$

С учетом вышеприведенного значения и имеем

$$U_{dh} = \frac{3U_{\pi}}{4\pi} \frac{L_s}{L_s + L_c} \left(\cos \alpha - \cos \left(\alpha + \gamma'_{\tau} \right) \right).$$

По известному соотношению [³], $\cos \alpha - \cos (\alpha + \gamma'_{\tau}) = 2I_d x_s / \sqrt{6} U_{2\Phi}$, где $x_s = \omega L_s$. Учитывая это, а также соотношение между линейными и фазовыми величинами, находим для опережающего регулятора среднее значение помех

$$U'_{dh} = -\frac{3}{2\pi} \frac{L_s}{L_s + L_c} I''_d x_s. \tag{1}$$

Аналогично находим среднее значение помех для запаздывающего регулятора

$$U''_{dh} = \frac{3}{2\pi} \frac{L_s}{L_s + L_c} I'_d x_s.$$
(2)

Наряду с коммутацией тиристоров на выходное напряжение регулятора оказывает влияние коммутация суммарного тока в общей диодной группе, среднее значение помех в которой отрицательно:

$$U^{0}_{dh} = -\frac{3}{2\pi} \int_{0}^{t_{\partial}} \frac{U_{\pi}}{2} \sin \omega t \, d\omega t = \frac{3}{4\pi} \left(1 - \cos \gamma_{\partial}\right) = -\frac{3}{2\pi} \left(I'_{d} + I''_{d}\right) x_{s}.$$

Выходное напряжение регулятора равняется сумме полезной составляющей и помех:

$$U'_{d}(I'_{d}, I''_{d}) = U'_{d} + U''_{dh} + U^{0}_{dh} = U'_{d} - \frac{.3}{2\pi} \left(\left(1 + \frac{L_{s}}{L_{s} + L_{c}} \right) I''_{d} + I'_{d} \right), \quad (3)$$

$$U_{d}''(I'_{d}, I''_{d}) = U_{d}'' + U_{dh}'' + U_{dh}^{0} = U_{d}'' - \frac{3}{2\pi} \left(\left(1 - \frac{L_{s}}{L_{s} + L_{c}} \right) I'_{d} + I''_{d} \right).$$
(4)

Общая индуктивность сети обусловливает взаимосвязь токов обоих perуляторов, которая больше для опережающего регулятора $\left|\frac{\partial U'_d}{\partial I''_d}\right| >$

$$>_{\downarrow} \left| \frac{\partial U_{d}''}{\partial I'_{d}} \right|$$

Подача управляющего импульса в течение интервала коммутации опережающего тиристора в радиальной сети

Схема для анализа процесса коммутации показана на рис. 1, а его описание дано в табл. 2. Аналитические зависимости для $U'_{d}(I'_{d}, I_{d}'')$ и $U_{d}''(I'_{d}, I_{d}'')$, полученные по изложенной методике, показывают, что в данном случае встает острая проблема допустимого числа *n* тиристорных регуляторов, подключаемых к общим элементам. В самые жесткие условия попадает, видимо, *n*-й тиристор, который отпирается тогда, когда происходит коммутация в *n* — 1 тиристорах. Схема замещения цепи показана на рис. 2. Действующий между точками схемы *a* и *b* перепад напряжения $U_{ab}(t) = U_{\Lambda}(t)L_c/((n-1)L_s + L_c)$ обусловливает ток коммутации в последней *n*-й паре тиристоров. Коммутация этой пары произойдет только в том случае, если за время действия управляющего импуль-

Таблица 2

Takm	t	Включенные Бентили	U'd	U'd-	Векторная диаграмма
Ι.	wt < d'	V_{5}', V_{6}, V_{5}''	U _{CB}	U _{CB}	$\begin{array}{c} & \wedge A \\ & & \\ V_{5}^{\prime}, V_{5}^{\prime} & \checkmark \\ C & U_{d}^{\prime\prime} = U_{d}^{\prime} & B \end{array}$
[]	a' < wt < a'	V ₅ ' u V ₁ ', V ₆ .V ₅ "	<u>3</u> ∪ _B e / ™	$\frac{3}{2\cos x} U_{B} e^{j(\overline{T} + x)}$ $\frac{1}{x = \arcsin \sqrt{3}} \frac{1}{\frac{1}{1 + L_{S}/L_{c}}}$	Visuve Visuve C Ud
₫	σζζωt<(σζ+γ'τ)	V5'u14', V6, V5 uV1"	3 Uge 177	<u>3</u> ∪ _B e ^{JT}	VisuVi VisuVi c
N	6x;+y;+ <wt </wt (x;+y;+)	V1', V6, V5" u V1"	$\frac{3}{2\cos x} U_B e^{j(\pi - x)}$ $\frac{3}{x = \operatorname{arctg}} \frac{1}{\sqrt{3}} \frac{1}{1 + L_s/L_c}$	<u>3</u> U _₿ e ^j ^π	
¥	(∞"+ \$" _T)< ωt	V1', V6 , V1"	U _{AB}	U _{AB}	

Процесс накладывающейся коммутации в радиальной сети

Рис. 2. Схема замещения радиальной сети с *n*—1 парами коммутирующих тиристоров.

са ток коммутации превысит ток удержания тиристора *i*уд. При этом критическим случаем является, очевидно, синфазное управление. Указанное условие позволяет записать

$$i_{\mathrm{R}}(t_{\mathrm{H}}) = \frac{U_{\mathrm{J}}(t_{\mathrm{H}})L_{c}}{2r_{\partial}((n-1)L_{s}+L_{c})} \left(1 - \exp\left(-\frac{t_{\mathrm{H}}}{\tau}\right)\right) \geq i_{\mathrm{y}\mathrm{J}}, \qquad (5)$$

где $t_{\rm fr}$ — длительность управляющего импульса, r_{∂} — дифференциальное сопротивление отпертого тиристора, $\tau = L_c/r_{\partial}$.

При выполнении условия $n \gg 1$ (случай, который нас интересует) $(n-1)L_s \gg L_c$, что позволяет найти

$$n \leq \frac{U_{\mathcal{J}}(t_{\mathrm{H}})L_{c}}{2r_{\partial i_{\mathrm{yg}}}L_{s}} \left(1 - \exp\left(-\frac{t_{\mathrm{H}}}{\tau}\right)\right) + 1.$$
(6)

 $U_{I_{\Lambda}}(t)$, входящее в формулы (5) и (6), является ненагруженным линейным напряжением, которое проходит нуль при $\alpha = 0$.

Наиболее трудные условия для совместной работы регуляторов имеют место в начале ($\alpha_{\text{мин}} > 0$) и конце ($\alpha_{\text{макс}} < \pi$) диапазона регулирования. Следовательно, существует ограничение: допустимый диапазон регулирования связан с допустимым числом тиристорных регуляторов соотношением

$$n \leqslant \frac{U_{\Pi \text{ Marc}} \sin \alpha_{\text{orp}}}{2r_{\partial} i_{yg}} \frac{L_c}{L_s} \left(1 - \exp\left(-\frac{t_{\text{H}}}{\tau}\right) \right) + 1, \qquad (7)$$

где $\alpha_{\text{огр}} \in \{\alpha_{\text{мин}}, \alpha_{\text{макс}}\}.$

Проиллюстрируем сказанное примером. Пусть плазмотронная нагрузка имеет параметры: $U_{d0} = 230$ В при $\alpha_{\rm мин} = 20^{\circ}$. Выбираем слабое реактирование $L_c/L_s = 0,1$. Индуктивность рассеивания $L_s = 100$ мкГн, ток удержания $i_{\rm уд} = 0,5$ А, длительность управляющего импульса $t_{\rm H} = 100$ мкс, $r_{\theta} = 5$ мОм. Тогда

$$n \leqslant \frac{1,045 \cdot 230 \cdot \sin 20^{\circ}}{2 \cdot 5 \cdot 10^{-3} \cdot 0,5} \cdot 0,1 \cdot \left(1 - \exp\left(-\frac{10^{-4}}{10^{-4}} \cdot 5 \cdot 10^{-3}\right)\right) = 9.$$

Приведенный пример показывает, что в случае радиальной сети можно объединить значительное число тиристорных регуляторов и получить соответствующий экономический выигрыш.

Подача управляющего импульса вне интервала коммутации опережающего тиристора в магистральной сети

Схема для анализа процесса коммутации показана на рис. 3, описание дано в табл. 3. Следует обратить особое внимание, что в данном случае

Рис. З. Схема магистральной сети с общей диодной группой.

исход процесса зависит от того, где находится опережающий тиристор — ближе или дальше от источника энергии. Для краткости изложения в табл. З показан лишь первый вариант, однако второй вариант учтен при выводе расчетных формул (табл. 4). Поскольку методика анализа описана выше, ограничимся лишь представлением окончательных результатов для среднего значения помех U_{dh} , среднего значения выходного напряжения регулятора $U_d \{I_d\}$ и чувствительности к возмущению от со-

седних регуляторов $\frac{\partial U'_d \{I_d\}}{\partial I''_d}$, $\frac{\partial U''_d \{I_d\}}{\partial I'_d}$. По представленному ма-

териалу можно сделать следующие выводы. При любом сочетании углов управления на кривой выходного напряжения дальнего регулятора появляются максимально возможные по амплитуде коммутационные провалы. Независимо от места подсоединения двух регуляторов к магистрали кривая помех в запаздывающем всегда имеет форму пика, а в опережающем, наоборот, — форму провала. Максимальное возмущение испытывает ближний регулятор, управляемый опережающим импульсом

Таблица 3

Takm	ωt	Включенные Вентили	Ud	Uď	Векторная диаграмма '
1	wt < ∝'	V5', V6 , V5	U _{CB}	U _{CB}	VS,VS C Ud Ud B
0	σc'< ωt <(σc'+ j'')	V5' uV1', V6, V5"	<u>∃</u> U _B e ^j ^π	<u>3</u> 2 U _В е ^Д	Visu Vi, Vis C
	(a'+yi+kwt <a"< td=""><td>V_{1}', V_{5}, V_{5}''</td><td>U_{AB}</td><td>U_{CB}</td><td>vi vi vi</td></a"<>	V_{1}', V_{5}, V_{5}''	U _{AB}	U _{CB}	vi vi vi
Ĩ	σ"< ωt <(σ"+ξ"τ)	V1', V6, V5" UV1"	$\frac{3}{2\cos x} U_{B} e^{j(\pi-x)}$ $\frac{1}{x-\operatorname{arctg} \frac{1}{\sqrt{3}}} \frac{1}{1+L_{S}/L_{c}}$	3 2∪ _B e ^{pr}	
P	(∝"+yt _T)< ωt	V1, V6, V1	U _{AB}	U _{AB}	

Процесс ненакладывающейся коммутации в магистральной сети $(\alpha'$ принадлежит ближнему к источнику энергии регулятору)

Таблица 4

Усло- вия уп-	Местонахождение тиристорного регулятора					
равле- ния	ближе к источнику энергии	дальше от источника энергии				
регуляторы	$U'_{dh} = -\frac{3}{2\pi} \frac{L_s}{L_s + L_c} I''_d x_s,$	$U_{dh}'' = \frac{3}{2\pi} I'_d x_s,$				
г на ближние р	$U'_{d} \{ I_{d} \} = U'_{d} - \frac{3}{2\pi} x_{s} \left(I'_{d} + I''_{d} \left(1 + \frac{L_{s}}{L_{s} + L_{c}} \right) \right), \qquad (8)$	$U''_{d}\{I_{d}\} = U''_{d} - \frac{3}{2\pi} I''_{d} x_{s}, \qquad (9)$				
α' действуе V'1, V'3, V	$\frac{\partial U'_{d}\{I_{d}\}}{\partial I''_{d}} = -\frac{3}{2\pi} x_{s} \left(1 + \frac{L_{s}}{L_{s} + L_{c}}\right).$	$\frac{\partial U_d''\{I_d\}}{\partial I'_d} = 0.$				
регуляторы	$U'_{dh} = \frac{3}{2\pi} \frac{L_s}{L_s + L_c} I''_d x_s,$	$U_{dh}'' = -\frac{3}{2\pi} I_d' x_s,$				
α''_{p_1} действует на дальние V''_{p_2} V''_{p_3} V''_{p_5}	$U'_{d} \{ I_{d} \} = U'_{d} - \frac{3}{2\pi} x_{s} \left(I'_{d} + \frac{L_{s}}{L_{s} + L_{c}} \right) \right), \qquad (10)$	$U_{a}''\{I_{d}\} = U_{d}'' - \frac{3}{2\pi} (I_{d}'' + 2I_{d}') x_{s}, (11)$				
	$\frac{\partial U'_d\{I_d\}}{\partial I''_d} = -\frac{3}{2\pi} x_s \left(1 - \frac{L_s}{L_s + L_c}\right).$	$\frac{\partial U_{d}^{''}\left\{I_{d}\right\}}{\partial I'_{d}} = -\frac{3}{\pi} x_{s}.$				

Характеристика регуляторов с учетом ненакладывающейся коммутации

от тока дальнего, что подтверждено экспериментом. Нулевую зависимость выходного напряжения дальнего регулятора от тока опережающего ближнего регулятора эксперимент не подтвердил. Это объясняется тем, что макет содержал значительные активные сопротивления дросселей L_s, L_c, моделирующих соответствующие идеализированные индуктивности.

Подача управляющего импульса в течение интервала коммутации опережающего тиристора в магистральной сети

Процесс коммутации описан в табл. 5 в предположении, что опережающий управляющий импульс действует на дальний тиристорный регулятор. Особое внимание следует обратить на III такт работы, когда одновременно включены вентили V'_5 , V'_1 (как начавшие коммутацию) и вентили V_5'' , V_1''' (как вновь включенные). Из схемы замещения (рис. 4) видно, что пара вентилей V_5'' , V_1''' закорачивает отдаленную цепь. В левой части цепи действуют сумма линейного напряжения $U_{,1}(p)$ и эдс самоиндукции, накопленный током коммутации за интервал времени $(\alpha'' - \alpha')/\omega$ в индуктивности L_s . В правой части цепи действует эдс самоиндукции, накопленной за указанный интервал в индуктивности L_c .

Рис. 4. Схема замещения магистральной сети при накладывающихся углах коммутации.

В таких условиях непременно происходит коммутация V_5'' , V_1'' , т. е. ближней пары вентилей. Условия коммутации дальней пары V'_5 , V'_1 требуют обсуждения. При действии на тиристорные группы длинных управляющих импульсов

$$t_{\rm H} > \frac{\gamma_{\rm T}' + \gamma_{\rm T}''}{\omega}$$

коммутация V'_5 , V'_1 происходит с задержкой $\gamma_{\rm T}''/\omega$, длительность которой зависит от тока I_d'' . При запуске же тиристорных групп короткими управляющими импульсами $t_{\rm H} \rightarrow 0$ в интервале $\alpha' < \omega t < \alpha''$ ток коммутации в правом контуре нарастает, а в интервале $\alpha'' < \omega t < (\alpha'' + \gamma_{\rm T}'')$ — падает. Если $i'_{\rm R}(p)$ упадет ниже $i_{\rm yg}$, то дальняя пара отключится, т. е. произойдет отказ. Очевидно, наиболее вероятные условия для отказа создаются при синфазном управлении $\alpha'' = \alpha'$.

Такты IV, V имеют место лишь при выполнении условия (12), которое является необходимым и достаточным условнем работы магистральной сети с общей группой. (Согласно [⁴], модульный принцип в магистральной сети недопустим.) Случай, когда первыми включаются тиристоры ближней пары, отличается от рассмотренного лишь тем, что пои действии длинного управляющего импульса начало коммутации V₅", V₁" задерживается на $\gamma'_{\rm T}$, а при действии короткого управляющего импульса их коммутация вообще не начинается.

Таблица 5

(12)

Процес	с накладывающейс	ся комму	утации л	в маги	истральной	сети
--------	------------------	----------	----------	--------	------------	------

			and the second sec	and a second s	
Takm	ωt	Включенные Бентили	U'd	Uď"	Векторная диаграмма
1	wied	V5', V6 , V5"	U _{CB} .	U _{CB}	V", V" 14" - U" Ve C L 4" - U" B
Į	d'ewted'	V5 UV1, V6, V5"	<u>∃</u> U _B e ^j π	$\frac{3}{2\cos x} U_B e^{J(\mathcal{T} + \mathcal{X})}$ $\mathcal{X}= \operatorname{arctg} \frac{1}{\sqrt{3}} \frac{1}{1 + L_s/L_c}$	VS UVI VE
<u></u>	$\alpha^* < \omega t \leq (\alpha^* + g_T^*)$	$V_{5}' \cup V_{1}', V_{6}, V_{5}'' \cup V_{7}''$	<u>3</u> U _B e ^{jπ}	<u>3</u> U _B e [∭]	V's u V' A V's u V' A V's u V' A V's u V' A V's U'd = U'd B
Ŵ	(ox' + y'_t) < wt <(ox" + y"_t)	V'5 uV'1.V6,V1"	<u>3</u> 2 ₀ e ^j T	$\frac{3}{2\cos x} U_B e^{j(x^2 - x^2)}$ $x = \operatorname{arctg} \frac{1}{\sqrt{3}} \frac{1}{1 + L_s/L_c}$	Vi vi Aue Vi vi Vi cue B
<u>V</u>	$(\alpha'' + \gamma''_{T}) < \omega t$	$V_1^{*}, V_6^{*}, V_7^{*}$	U _{AB}	U _{AB}	

Выволы

Процессы коммутации в системе управляемых выпрямителей обусловливают взаимосвязь выходных напряжений от тока соседних нагрузок. В радиальной сети установлена зависимость допустимого числа тиристорных регуляторов в системе от диапазона регулирования, однако найденные ограничения допускают разработку системы со значительным числом тиристорных регуляторов. Магистральная сеть требует применения длинного запускающего импульса. Обнаруженный эффект транспортного запаздывания управляющего воздействия на тиристоры дальнего регулятора может привести к автоколебаниям при замыкании системы автоматического регулирования.

ЛИТЕРАТУРА

- Тамкиви П., Томсон Т. Изв. АН ЭССР, Физ. Матем., 31, № 4, 454—457 (1982).
 Томсон Т., Ерохина Е. Изв. АН ЭССР, Физ. Матем., 32, № 2, 210—217 (1983).
 Полупроводниковые выпрямители (под ред. Ф. И. Ковалева и Г. П. Мостковой). М., «Энергия», 1978.
 Томсон Т. Изв. АН ЭССР, Физ. Матем., 32, № 2, 218—222 (1983).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 20/Х 1982

T. TOMSON

TÜRISTORIDE KOMMUTATSIOONIPROTSESSID **ÜHISOSAGA JUHITAVATE ALALDITE SÜSTEEMIS**

Türistoride kommutatsiooniprotsess on oluline ühisosaga juhitavate alaldite süsteemi töövõime ja väljundkarakteristikute seisukohast. Artiklis on käsitletud mittekattuvaid ja kattuvaid kommutatsiooniprotsesse radiaalse ja magistraalse konfiguratsiooniga võrkudes. Radiaalse võrgu ja mittekattuva kommutatsiooni puhul on antud analüütilised seosed väljundpingete arvutamiseks kahest türistorregulaatorist koosnevas süsteemis ja sõltuvus naaberregulaatori koormusvoolust. Kattuva kommutatsiooni puhul on või-malik leida piirangud süsteemi regulaatorite arvu ja reguleerimispiirkonna ulatuse suhtes. Magistraalvõrkude puhul on toodud analoogilised seosed, kui kommutatsioonid on mittekattuvad, ning leitud juhtimpulsi minimaalne lubatud pikkus, mis on vajalik tõrketa tööks sünfaasse juhtimise korral (kattuva kommutatsiooni raskeim juhtum). On näidatud, et magistraalvõrkudes tekib juhttoime transporthilinemine, mis võib põh-justada võnkumisi sulatud tagasisidaabala puhul justada võnkumisi suletud tagasisideahela puhul.

T. TOMSON

THYRISTOR COMMUTATION PROCESSES IN THE SYSTEM **OF COMMON PART CONTROLLED RECTIFIERS**

The commutation process of thyristors is important for the sake of reliability and output characteristics of the common part of controlled rectifiers systems. In the paper noncoincident and coincident commutation processes are analysed in the nets of radial and main line configuration. In case of radial net and noncoincident commutation, and main line configuration. In case of radial net and noncoincident commutation, analytical equations to calculate the output voltage in a system of two thyristor regu-lators and their dependence on the adjacent load current, are given. Under the coincid-ent commutation, the limitatious are calculated for the number of regulators as a function of extreme current. With main line nets, similar relations are given for non-coincident commutation. In the main line nets with the coincident commutation, the minimum duration of the firing pulse to guarantee the system reliability is calculated. In the main line net the transport delay in the execution of the control signal occurs that may cause some autogeneration in the closed feedback loop.