
300

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÖIDE
FÜÜSIKA * MATEMAATIKA. 1983, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32
ФИЗИКА * МАТЕМАТИКА. 1983. № 3

УДК 539.28

V. SINIVEE

CONCEPTS IN NUCLEAR SPIN DYNAMICS OF LIQUIDS. 1

{Presented by E. Lippmaa)

The Density Matrix Theory founded by Bloch, Wangsness and Redfield
[ l-3 ] has been proved to be the only sound basis we have in Liquid NMR
to explain phenomena and to generate ideas of new experimental
methods. It has also stimulated similar theoretical developments in other
branches of radiospectroscopy, in nonlinear optics and in quantum theory
of irreversible processes. Thus, there is sufficient reason to develop Nuc-
lear Spin Dynamics (NSD) as the theory of certain kind of natural
phenomena in its own rights, although applications in NMR Spectroscopy
are still in background.

The present series of papers is an attempt to give a brief but system-
atic explanation of mathematical and physical concepts needed in NSD
of Liquids. General relationships between phenomena will be represented
on a simple but sufficiently correct level. The usage of Lie groups and
of their associated Lie algebras form the mathematical background of
this treatment. Earlier work of the author on the use of unitary Lie
groups in Adiabatic NSD [ 4is ] will be extended to the general case of
irreversible NSD. In this, first, paper of this series we list the general
mathematical concepts used throughout this work.

1. General mathematical concepts

1.1. Linear spaces. The general mathematical concepts we need
to develop NSD are: unitary and cartesian linear (vector) spaces, linear
operators on these spaces, Lie groups, Lie rings and their representa-
tions composed of linear operators [ 6 ].

Four different kinds of linear metric spaces will be used simul-
taneously: the 3-dimensional (cartesian) ordinary vector space V, the
unitary State Vector Space C, the unitary space О composed of all
linear operators on C (the Unitary Liouville Space), and the cartesian
space H of all hermitian linear operators on C (the Cartesian Liouville
Space). On each of these spaces we define linear operators; those defin-
ed on Liouville Spaces will be called superoperators [7 ], Since linear
operators on C are simultaneously vectors of Liouville Spaces, the dimen-
sions of the spaces С, О, H are related by

dim 0= dim H= (dim C) 3 . (LI)
Classical vectorial physical quantities, like the strength of the extern-

al magnetic field or the nuclear magnetization of the sample, are ele-
ments of the ordinary vector space V. Quantum mechanical quantities
are elements of С, О and H. The state vector (t|Q f= C specifies a pure
quantum state of the molecular nuclear spin system (of the spin system),
whereas the density operator P e H describes a state of the statistical
ensemble of spin systems embedded in the sample (of the spin ensemble).
Since NSD is concerned only with macroscopic processes, the Liouville
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Spaces rather than the State Vector Space is applied to describe time-
evolution of the spin ensemble. The space C plays rather a purely mathe-
matical role we do not follow time-evolution of state vectors except
in case of adiabatically isolated spin systems (of Adiabatic NSD). Since
the principal quantum mechanical quantities are hermitian operators on
C, the space H is the only Liouville Space we actually need. However,
we shall use simultaneously the space О due to several mathematical
advantages it promises. Of course, the vectors of H are simultaneously
vectors of О and so are the superoperators on H. We use for such equi-
valent quantities a unified notation.

If dimC=h, we call the spin system a d-level system. So, a 4-level
system can be a two-spin 1/2 system, but it could be also a single spin
3/2 system. However, if the d-level system is a many-spin system, its
State Vector Space C as well as the Liouville Spaces can be presented
as direct products of corresponding single spin spaces. Thus, in case of
a two-spin system we have

C =C(1)XC(2), (1.2)
0=0(l)XO(2), (1.3)
H=H(I)XH(2), (1.4)

where C(l) and C(2) denote the State Vector Spaces of single spins
number 1 and 2, respectively. Similar notation is used in Eq. (1.3), (1.4)
for Liouville Spaces.

The notation of a linear space means that its elements can be added
as vectors and multiplied by real (cartesian space) or complex (unitary
space) numbers. Linear transformations performed by linear operators
also belong to the linear algebra of the linear space. If, in addition to
these linear algebraic operations the scalar product between any two
vectors is defined, one speaks of the metric of this space. We shall use
spaces with cartesian metric (the spaces V and H) as well as with uni-
tary metric- (the spaces C and O). The linear operations and the scalar
product are the main algebraic operations for the space C. In case of
the space О there is a futher algebraic operation available the matrix
product between elements of this space considered as a linear operators
on C. Thus, the elements of О form a matrix algebra [ 6 ]. Meanwhile, the
scalar product between two elements of O, say H and P, is given in
terms of matrix algebra as follows

u={H,P)=iv{HP+), (1.5)

where the cross stands for the hermitian conjugation. Especially, if H
denotes the Hamiltonian and P, the density operator Eq. (1.5) gives the
internal energy of the spin ensemble calculated per molecular spin
system and in units of fi= 1.

Eq. (1.2)
duct. There are direct products of vectors, of linear spaces, of linear ope-
rators and groups.
1.2. Lie rings. The space H is not closed with respect to matrix
products between its elements, yet it is closed relative to linear opera-
tions in the domain of real numbers and relative to the Lie product
given by

—i[H,P] =—i{HP PH ), (1.6)

where H and P denote arbitrary hermitian operators on C. If the Lie
products Eq. (1.6) are defined (in addition to linear operations) between
the vectors of the linear space H of a rf-level system, one speaks of the
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Lie ring or Lie algebra u (d). Those operators ЯеН which possess the
property

tr H=o c (1.7)
form the subspace H° cz H of traceless hermitian operators. This sub-
space is also closed relative to Lie products it forms the Lie ring
su (d), a subring of u (d).

It is worth mentioning that calculation of Lie products does not
require, at all events, knowledge of the matrix products noted in Eq.
(1.6). It is sufficient to choose a basis system of hermitian operators
(a system of generators of the Lie algebra) which span the space H°
and between which the Lie products are given. The latter form the basic
system of commutation relationships for the Lie algebra su(d).

Linear operators of the form XE, with X a real number and E the unit
operator on C, constitute the 1-dimensional subspace Нес H which is
orthogonal to H°. The operators XE <= H E commute with all other opera-
tors of the Lie ring u{d) they'are the Casimir operators of this ring.
Decomposition of the space H into a direct sum of mutually orthogonal
subspaces shown by Eq. (1.8) ’

H = HE-j-H° (1.8)
reflects the location of vectors of the Lie ring su{d) U° in the space
H= u (d) . Note that

dim H°—d2 1. (1.9)

Lie rings possess representations composed of linear operators on
suitable representation spaces [6 ]. If the space H° is taken for the ori-
ginal (abstract) Lie ring su (d), then the traceless hermitian operators
ЯеО°сО form such an (isomorphic) representation of su(rf) on space
o°. Linear operators of the form XE, with X a complex number, consti-
tute the 1-dimensional subspace 0E which is orthogonal to the subspace
0° of traceless linear operators on C.

In order to get the adjoint representation of su {d) on O, [ 6 ] we
establish a one-one correspondence
; H-> Ж (1.10)

between ЯеН° and antihermitian superoperators J 6 on О as follows
№L=—i[H,L]. (1.11)

In Eq. (1.11) L denotes an arbitrary linear operator which runs through
O, whereas ifesu(rf) is given and specifies the corresponding superope-
rator Ж: Especially, if H denotes an Hamiltonian, then 3€ denotes the
corresponding Superhamiltonian.

If in Eq. (1.11) L denotes an arbitrary hermitian operator LgH,
the superoperators Ж on H are antisymmetric. They form the adjoint
representation of su (d) on H.

The vectors of the space V constitute the Lie ring so(3), provided the
ordinary vector product is considered as the Lie product. We choose the

orthonormal laboratory coordinate system ej g V, j=x,y,z, traditionally:

e z is directed along the strong static magnetic field b O , e x shows the
direction of the receiver coil and ev that of the transmitter coil. The
basis vectors are related by vector products;

->•

[e x ,6y~\ = 6 z (1.12)
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and cyclic permutations. Equation (1.12) forms the basic system of so(3).
An important for NSD isomorphic representation of so(3) on Liouville

Spaces of single spin 1/2 systems is built-up as follows; one sets up
the one-one correspondence

%++lj, U=x,y,z) (1.13)

between the basis vectors of V and the corresponding single spin opera-
tors Ix, I y , I z - Since

-i[lx,Iy]=lz (I- 14)

and cyclic permutations, the single spin operators form the basis for a
representation of so(3) on the space H° or 0° of the single spin 1/2
system. Since

{lj, Ik) =(1 /2) Ö j ft , ( j,k=x,y,z), (1.15)

this basis is orthogonal yet not normalized. Using this representation,
one gets such a one-one correspondence between ordinary vectors as

tö== Jjjj at (l*lb)
j

and single spin 1/2 hermitian operators
Я=Д7<оЛе= H° (1.17)

i
so that the Lie algebraic relationships are the same in both spaces V
and H°. Especially, if

Z=—yb e V (1:18)
with b the strength of external magnetic field, у the gyromagnetic ratio

and 03 the Larmor vector, then Eq. (1.17) gives the Elamiltonian of the
Zeeman interaction.

Note that the space H° of a single spin 1/2 system is governed by the
Lie algebra su(2). Thus, so(3) and su(2) are isomorphic.
1.3. Lie groups. The continuous manifold of regular linear opera-
tors which transform a linear space into itself, form a (linear) Lie
group. Unitary Lie groups (e. g. composed of unitary operators) conserve
the metric of unitary spaces, the orthogonal Lie groups conserve that of
cartesian spaces. To each Lie group belongs a Lie ring (the infinitesimal
ring of this group) the elements of which characterize infinitesimal
transformations of the linear space. Knowledge of the Lie ring allows
one to study common properties of operators of the associated Lie
group [9 ].

Unitary operators D on the State Vector Space C of a d-level system
form the Lie group U(d), those with detZ)=l compose its unimodular
subgroup SU(d). The elements Z) (t) eSU(d) can be considered as
points of a ( d2 —l)-dimensional Rieman space in which continuous
smooth functions of a real parameter describe curves which possess
a common initial point D{o)=E (the unit operator on C). The infinite-
simal ring su (d) of this Lie group is composed of traceless hermitian
operators like

( IЛ9>

which thus play the role of the tangent of the curve D(x) at the initial
point. All possible operators (1.19) constitute the Lie ring su (d) descri-
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bed in See. 1.2. Infinitesimal unitary transformations (t->0) of space C
are now given by

'D [x)—E ixl. (1.20)
One can choose a set of ( d2 —l) mutually orthogonal operators (1.19)
associated with mutually orthogonal curves D{ t), which span the space
H° of the Lie ring.su (d).

Lie groups and its Lie rings possess representations defined on other
linear spaces (on representation spaces) [6 ], The group algebraic and
Lie algebraic relationships in a representation coincide with those in
the original group or ring, respectively. The same is true for the relation
(1.19) between a Lie group and its associated Lie ring.

Nuclear Spin Dynamics is especially interested in adjoint represen-
tations of Lie groups SU (d) and of its Lie rings su (d) on spaces О and
H of a d-level system. If L denotes an arbitrary vector of О and D e
eSU (d), then the unitary adjoint representation 3) of D is given by

T>L =DLD~!eO, (1.21)

where 2) is a unimodular unitary superoperator on O. If the correspon-
dence

Z)->3) (1.22)
defined by Eq. (1.21), is applied to all DeSU(rf), we have the unitary
adjoint representation of SU {d).

If, on the other hand, the definition (1.21) is applied only to hermi-
tian operators LeO, one gets the orthogonal adjoint representation of
SU (d) on H.

If D =D{t), then T)=‘B T and the superoperator
, I dtD(t)M|dVT|L=o d-23)

is the adjoint representation of the operator (1.19). In case of unitary
adjoint representation 3 is antihermitian, whereas for orthogonal adjoint
representation 3 is asymmetric. In both cases the definition (1.23) is
equivalent to the definition (1.11). Applying the correspondence

defined by Eq. (1.11), (1.23) to all / esu(d), one gets the adjoint repre-
sentations of su(d) on H and O.
1.4. Adiabatic Nuclear Spin Dynamics. The dynamics of
an ensemble of adiabatically isolated d-level systems can be described
in terms of Lie group SU(d) and Lie ring su {d).

In Adiabatic NSD time-evolution of the state vector is
determined by the Schroedinger equation

whereas the motion of the density operator P (t) e H is governed by the
Liouville equation [8 ' 9 ]

~=x:(t)P:(1.26)

In Eq. (1.25), (1.26) H{t) denotes the Hamiltonian (in units 1)' and
J£(/) is the corresponding Superhamiltonian. As a rule,

H{t)=Ho+HE {t), (1.27)
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where the time-independent part H 0 includes (time-averaged) internal
interactions of the spin system as well as its interactions with the string

static magnetic field b - The time-dependent part HE {t) (the excitation) is

usually due to time-dependent external magnetic field bE {t) (the Zeeman
excitation) which is weak in the sence

IMOI < \ bo\. (1.28)

As a rule, the Hamiltonian (1.27) satisfies Eq. (1.7). Thus

H[t) GSU(d), (1.29)

whereas the Superhamiltonian
зе(/)=зе o+зев(o (i. 30)

belongs to the adjoint representation of su (d).
An alternative way in Adiabatic NSD is in use of time-dependent

unitary operators D (t, 0) gSU (d) (of propagators) which describe the
general solution of Eq. (1.25) [4 ]

ц,(o>=О(*.o)ц>(o)> (1.31)
the time-dependence of the propagator is governed by the equations

i~=H(t)D(l.32)

О (0,0)—(1.33)
which establish the one-one correspondence

H{t) 0). (1.34)
The general solution of the Liouville equation (1.26)

P(/)=tD(/,0)P(0) (1.35)
is described by propagators 2) (6 0) on H or О the time-dependence of
which is determined by the equations

= 360)3), (1.36)

3) (0, 0) = <§, (1.37)
where <S denotes the unit superoperator. If D{t, 0) gSU (d), then T)(f,0)
belongs to the adjoint representation of the dynamical group SU(<i),
whereas 3t[t) belongs to the adjoint representation of the dynamical ring
su(d). Note that Eq. (1.31), (1.35) describe a family of trajectories asso-
ciated with a continuous manifold of experimental situations rather than
a concrete one. Since the dependence of motion upon initial state is soon
incorporated in the propagator, one can concern oneself with the estab-
lishment of the correspondence (1.34). In order to solve Eq; (1.32),
(1.33), one can apply, say, the local approach studied by Magnus [ lo]

or the global approach proposed by Wei and Norman [ и ]. However, it
is the main purpose of the Groiiip Approach in NSD [ 4 - 5 ] to use the
theory of Lie groups in order to set up a classification of dynamical
relationships based on group structure and group representations.
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1/. SINIVEE

VEDELIKE TUUMASPINNIDE DÜNAAMIKA PÕHIMÕISTEID. 1

Käesoleva artikliga alustatud töödetsükli eesmärk on vedelike tuumaspinnide dünaamika
põhimõistete ja põhimiste seoste süstemaatiline esitus. Esimeses artiklis on vaadeldud
kasutatavaid matemaatilisi mõisteid.

В. СИНИВЕЭ
ОСНОВНЫЕ ПОНЯТИЯ в ЯДЕРНОЙ СПИНОВОЙ ДИНАМИКЕ

ЖИДКОСТЕЙ. 1

Задача данной серии работ систематическое изложение основных понятий и соотно-
шений в ядерной спиновой динамике жидкостей. В первой статье рассмотрены основные
применяемые математические понятия.
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