EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 31. KÕIDE FÜÜSIKA * MATEMAATIKA. 1982, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ФИЗИКА * МАТЕМАТИКА. 1982, № 3

https://doi.org/10.3176/phys.math.1982.3.21

В. ОЛЬМАН

УДК 519.281

НЕСМЕЩЕННАЯ ОЦЕНКА ПАРАМЕТРА ПРИ ЦЕНЗУРИРОВАННЫХ НАБЛЮДЕНИЯХ

V. OLMAN. PARAMEETRI NIHUTAMATA HINNANG TSENSEERITUD VAATLUSTE KORRAL V. OLMAN. UNBASED PARAMETER ESTIMATION UNDER CENSORED OBSERVATIONS

(Представил Н. Алумяэ)

Рассмотрим следующую статистическую модель. Над случайной величиной X проводится n > 1 независимых экспериментов. Известна функция распределения $F(x, \lambda)$ величины X с точностью до параметра $\lambda \Subset \Lambda$, где Λ — множество возможных значений параметра λ . При цензурировании наблюдений указывается лишь, с какой стороны от заданной точки *а* лежит реализация случайной величины. Задача заключается в несмещенном оценивании неизвестного параметра λ по результатам экспериментов. В качестве такой оценки рассмотрим $\hat{\lambda}$, являющуюся решением уравнения

$$k/n = F(a, \lambda), \tag{1}$$

где k — число реализаций, лежащих слева от a. Очевидны следующие требования к числу a:

1) $a \in \overline{S}_{\lambda}$, где $S_{\lambda} = \{a \in R_1 : 0 < F(a, \lambda) < 1\}, \lambda$ — истинное значение оцениваемого параметра, \overline{S}_{λ} — замыкание множества S_{λ} ;

оцениваемого параметра, \overline{S}_{λ} — замыкание множества S_{λ} ; 2) из равенства $F(a, \lambda_1) = F(a, \lambda_2)$, $a \in \overline{S}_{\lambda_1} \cap \overline{S}_{\lambda_2}$ должно следовать $\lambda_1 = \lambda_2$, иначе эти два распределения будут неразличимы с точки зрения имеющейся информации;

3) функция $F(a, \lambda)$ непрерывна по λ , и множество значений $F(a, \lambda)$ при $\lambda \in \Lambda$ совпадает со множеством [0, 1].

Перечисленные условия являются достаточными для существования и единственности решения уравнения (1) относительно λ.

Теорема. Если выполнены условия 1)—3), то решение уравнения (1) является несмещенной оценкой параметра λ при фиксированном $a \in S_{\lambda}$ тогда и только тогда, когда

$$F(a,\lambda) = \lambda c + l,$$

где l и с — произвольные вещественные числа такие, что $0 \leq \lambda c + l \leq 1$ для всех λ таких, что $S_{\lambda} \supset a$.

Доказательство. Пусть $\hat{\lambda} = G(k/n, a)$ — решение уравнения (1), т. е. F(a, G(k/n, a)) = k/n. Тогда в силу несмещенности оценки $\hat{\lambda}$ и того, что случайная величина k распределена по закону Бернулли, для $a \in S_{\lambda}$ получим

$$\sum_{k=0}^{n} G\left(\frac{k}{n}, a\right) C_{n}^{k} F^{k}\left(a, \lambda\right) \left(1 - F\left(a, \lambda\right)\right)^{n-k} = \lambda.$$
⁽²⁾

Выберем $\lambda_r = G(r/n, a), r = 0, 1, 2, ..., n, a \in \overline{S}_{\lambda_r}$ и перепишем уравнение (2) в виде

$$\sum_{k=0}^{n} G(k/n, a) C_{n}^{k}(r/n)^{k} (1 - r/n)^{n-k} = G(r/n, a),$$
(3)

Равенства (3) представляют собой линейную систему относительно $\{G(k/n, a)\}^{n}_{k=0}$. Решение системы (3) эквивалентно определению всех собственных векторов матрицы $A = \{C^{k}_{n}(r/n)^{k}(1-r/n)^{n-k}\}, k, r = 0, 1, 2, ..., n$, соответствующих собственному числу, равному 1. Заметим, что первой строкой матрицы A является (1, 0 ..., 0), а последней — (0, 0, ..., 0, 1). Следовательно, 1 является характеристическим числом кратности по крайней мере 2. Остальные собственные числа матрицы A совпадают с собственными числами матрицы

$$A^* = \{C_n^k (r/n)^k (1-r/n)^{n-k}\}, \quad k, n = 1, 2, \ldots, n-1.$$

Но так как

$$\sum_{k=0}^{n} C_{n}^{k} (r/n)^{k} (1-r/n)^{n-k} = 1, \quad r=0, \ 1, \ 2, \ \dots, \ n,$$
(4)

то $\max_{1 \le r \le n-1} \sum_{k=1}^{n-1} C_n^k (r/n)^k (1-r/n)^{n-k} < 1$, откуда по теореме Фробениуса

[1] следует, что максимальное собственное число матрицы A^* меньше 1. Таким образом, кратность собственного числа 1 у матрицы A равна 2. Найдем соответствующие ему собственные векторы **p** и **q**. Очевидно, вектор **p** = (1, 1, ..., 1) собственный в силу (4), а вектор **q** = (0, 1/n, 2/n, ..., n/n) собственный в силу равенства

$$\sum_{k=0}^{n} C_{n}^{k} t^{k} (1-t)^{n-k} k = nt, \quad 1 \ge t \ge 0.$$
(5)

Так как **p** и **q** линейно независимы, то все решения системы (3) описываются линейными комбинациями векторов **p** и **q**, т. е.

$$G(r/n, a) = c^{-1}r/n - l/c, \quad r = 0, 1, 2, \dots, n,$$
(6)

где с и l — произвольные постоянные. Подставляя (6) в (2), получаем

$$\sum_{k=0}^{n} (c^{-1}k/n - l/c) C_{n}^{k} F^{k}(a, \lambda) (1 - F(a, \lambda))^{n-k} = \lambda,$$

а используя (4) и (5), имеем

$$F(a,\lambda)/c = l/c = \lambda,$$

или

$$F(a,\lambda) = c\lambda + l,$$

что и доказывает необходимость. Достаточность легко проверить с помощью равенств (4) и (5).

Пример.

$$F(x,\lambda) = \begin{cases} (x-\lambda)/\sigma & \text{при } \lambda \leq x \leq \lambda + \sigma, \\ 0 & \text{при } x < \lambda, \\ 1 & \text{при } x > \lambda + \sigma, \end{cases}$$

т. е. $c = -1/\sigma$, $l = x/\sigma$.

359

В заключение вычислим дисперсию описанной несмещенной оценки. Так как

$$D(\hat{\lambda}) = \sum_{k=0}^{n} G^2(k/n, a) C_n^k F(a, \hat{\lambda})^k (1 - F(a, \hat{\lambda}))^{n-k} - \lambda^2,$$

то, используя равенство

$$\sum_{h=0}^{n} k^{2} C_{n}^{h} t^{h} (1-t)^{n-h} = nt[(n-1)t+1], \quad 0 \leq t \leq 1,$$

получаем

$$D(\lambda) = n^{-1}(1 - c\lambda - l) (c\lambda + l)/c^2,$$

т. е. по порядку малости дисперсии оценки λ совпадают с эффективными оценками.

ЛИТЕРАТУРА

1 Рао С. Р., Линейные статистические методы и их применения, М., «Наука», 1968.

Институт кибернетики Академии наук Эстонской ССР

Поступила в редакцию 22/II 1982

УДК 535.41:517.94

К решению одномерных волновых уравнений. Кард П. — Изв. АН ЭстССР, Физика * Математика, 1982, т. 31, № 3, с. 241—248 (рез. эст., англ.)

Если функция $\Theta(G)$ удовлетворяет уравнению

$$d^{2}\Theta/dG^{2} + [k^{2}h^{2}N^{2}(G) + (4\Phi^{2})^{-1}(\Phi'^{2} - 2\Phi\Phi'' \mp g^{-2})]\Theta = 0$$
⁽¹⁾

при заданных функциях N(G) и $\Phi(G)$ и постоянных k, h, g, то решение одномерного волнового уравнения

 $d^{2}U/dz^{2} + k^{2}g^{2}N^{2}(G)\Phi^{2}(G)(az/h+b)^{-2}(cz/h+d)^{-2}U = 0$ (2)

или

$$d^{2}U/dz^{2} + 4k^{2}g^{2}N^{2}(G)\Phi^{2}(G)\left[(a^{2}+c^{2})z^{2}/h^{2}+2(ab+cd)z/h+(b^{2}+d^{2})\right]^{-2}U = 0$$
(3)

(первое в случае верхнего знака в (1), второе в случае нижнего), причем ad - bc = 1, выражается формулой

$$U = (az/h+b)^{1/2}(cz/h+d)^{1/2}\Phi^{-1/2}\Theta$$
(4)

нлн

$$U = [(a^{2} + c^{2})z^{2}/h^{2} + 2(ab + cd)z/h + (b^{2} + d^{2})]^{1/2}\Phi^{-1}/^{2}\Theta$$
(5)

соответственно. Параметр G связан с координатой z формулой

$$\int \Phi^{-1} dG = M + g \ln \left(\frac{az/h + b}{cz/h + d} \right)$$
(6)

или

$$\int \Phi^{-1} dG = M + 2g \arctan\left(\frac{az/h+b}{cz/h+d}\right)$$
(7)

соответственно. Приведены четыре примера одномерных волновых уравнений, решаемых в замкнутом виде этим методом. Библ. 2 назв.