ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ФИЗИКА * МАТЕМАТИКА. 1982, № 3

УДК 531.011; 62-50

И. КЕЙС

О ДИНАМИКЕ КВАЗИКАНОНИЧЕСКИХ СИСТЕМ

I. KEIS. KVAASIKANOONILISTE SÜSTEEMIDE DÜNAAMIKAST I. KEIS. ON THE DYNAMICS OF THE QUASI-CANONICAL SYSTEMS

(Представил Н. Алумяэ)

В работе, продолжающей исследования [1-3], рассмотрен ряд интегральных и локальных свойств канонизируемых систем (квазиканонических). Эти системы заданы союзными с $\omega(dx, dt) \triangleq b \cdot dx + hdt$ уравнениями

$$Rx = a, R = [r_{i\sigma}], r_{i\sigma} = \partial b_i / \partial x_{\sigma} - \partial b_{\sigma} / \partial x_i, x = dx / dt \quad (i, j, \sigma = \overline{1, 2n}), (1)$$

$$a = \nabla_x h - \partial b / \partial t, \quad b = (b_j)^*,$$

$$x=(q_1,\ldots,q_n,p_1,\ldots,p_n)^*, \Delta R \stackrel{\triangle}{=} \det R > 0 \quad (a \cdot b = \sum_{i=1}^{2n} a_i b_i),$$

где форма ω — класса $2n+1 \rightarrow (\triangle R > 0)$, b(t,x), h(t,x) — достаточно гладкие функции. Гомеоморфизм $t=\vartheta(t,x),\ \widetilde{x}=f(t,x)$ переводит (1) в квазиканоническую систему, союзную с ω, полученной из ω гладким отображением $t \to \tilde{t}, x \to \tilde{x}$. В нормальных переменных [4,5] формы $\omega(dx,dt)$: $\tau = \tau(t,x)$, $\xi = \xi(t,x)$ имеем $\omega \stackrel{\triangle}{=} P \cdot dQ - G(\tau,Q,P) d\tau$, и система (1) переходит в гамильтонову [4]

$$d\xi/d\tau = Z\nabla_{\xi}G$$
, $Z = \begin{bmatrix} 0, & 1_n \\ -1_n, & 0 \end{bmatrix}$ при $c_1 \leqslant 0$, $\tau \leqslant c_2 < \infty$, $c_1 > 0$, $c_{1,2} = \text{const.}$ (2)

Всякая квазиканоническая система является скрытой канонической.

Итегральные свойства. Существование инварианта $I_{4}^{0}=\oint b\cdot\delta x$

 $(\Omega^0 \stackrel{\triangle}{=} b \cdot dx$ — класса $2n \ [^{4, \, 5}])$ — критерий квазиканоничности, т. е. представимости системы в виде (1) с $\Delta R > 0 \ (\forall h \subset C_1(t, x))$. Аналогично $[^6]$, любой линейный по δx относительный инвариант $\oint b^* \cdot \delta x \stackrel{\triangle}{=} I_4^* \equiv c^* I_4^0$ системы (1), т.е. $\Omega^* = c^* \Omega^0$, где $c^* = \text{const.}$ Система (1) имеет абсолютный инвариант порядка 2n и вида

$$I_{2n} = \int_{\Omega} M(t, x) \, \delta x_1 \dots \delta x_{2n},$$

$$M + M \operatorname{div} X(t, x) = 0 \quad (X = x, \text{ здесь } x = R^{-1}a). \tag{3}$$

Из (1), (3) в новых независимых переменных $\theta = \theta(t, x), y = y(t, x)$ находим

$$dy/d\theta = \tilde{\lambda}^{-1}Y(\theta, y), \quad dN/d\theta + N(\theta, y) \operatorname{div}_{y} (\tilde{\lambda}^{-1}Y) = 0$$

$$(\hat{N} = \hat{N}(\theta, y), \ \hat{\lambda}(\theta, y) = \theta)$$
 (4)

и формулу связи множителей M, N исходной и преобразованной системы (4)

$$N = \tilde{\lambda} M \tilde{\theta}_{t}^{-1} \Delta^{-1}(J), \quad J = [\partial y/\partial x], \quad \tilde{\theta}_{t} = \lambda^{*}(0, y_{0}) + \int_{0}^{t} \lambda_{t}^{*} d\sigma \quad (\theta = \lambda(t, x)). \quad (5)$$

При известных функциях τ_t , $\Delta(J^0)$ от t, x и свойстве $N^0=1$ системы (2) получим из (5) значение M в (3)

$$M(t,x) = \lambda^{-1} \tilde{\tau}_t \Delta(J^0), \quad \lambda = \lambda(t,x) = d\tau/dt, \quad J^0 = [\partial \xi/\partial x] \quad (\theta \to \tau),$$

$$\tilde{\theta}(t,y) \stackrel{\triangle}{=} \theta(t,x(t,y)), \quad \tilde{\tau}(t,\xi) \stackrel{\triangle}{=} \tau(t,x(t,\xi)), \quad \lambda^*(t,y) \stackrel{\triangle}{=} \lambda[t,x(t,y)].$$

Рассмотрим стационарный на $\dot{x}(t)$ -решениях (1) функционал Пфаффа

$$I[\tilde{x}] = \int_{t_0}^{t} (b \cdot \tilde{x} + h) d\sigma, \quad \delta I[x] = 0$$
 (6)

при фиксированных концах t_0 , t, $\widetilde{x}(t_0)$, x(t). Так как (1) удовлетворяет модифицированному принципу Ливенса [4], то она имеет на x(t) вариационную форму $\mathcal{E}[L]_x = 0$, где $L = b \cdot \widetilde{x} + h$, $\mathcal{E} = \nabla_{\widetilde{x}} - d/dt \circ \nabla \widetilde{x}$.

Отсюда при $b_t = 0$, $h_t = 0$ и $b_{xj} = 0$, $h_{xj} = 0$ система (1) имеет соответственно интегралы $h = h_0 = \text{const}$ и $b_j = b_{j0} = \text{const}$.

Локальные свойства. Обозначим $I[x] = \tilde{S}(t, t_0, x_0)$. В случае свободных концов найдем, учитывая (6), вариацию $\delta I[x]$ в виде

$$\delta \widetilde{S} = (b \cdot \delta x + h \delta t) \mid_{t}^{t}, \quad \partial \widetilde{S} / \partial t = -h(t_0, x_0) = -h_0, \quad dS(t, x_0) \stackrel{\triangle}{=} \delta \widetilde{S} + h_0 \delta t. \quad (7)$$

Фиксируя t_0 в (7), получим, что определенное (1) преобразование $x_0 \to x$, $t_0 \to t$, $x = x(t, x_0)$ имеет локальное свойство, данное уравнением

$$b(t,x) \cdot dx + h(t,x) dt = b(t_0,x_0) dx_0 + dS(t,x_0) \qquad (x = x(t,x_0)). \tag{8}$$

Справедливо обратное: если в переменных

$$t, \gamma : \omega = k(t_0, \gamma) \cdot d\gamma + dK(t, \gamma), \tag{9}$$

 $x = \tilde{x}(t, \gamma), \ \Delta[\partial \tilde{x}/\partial \gamma] \neq 0, \ \gamma = \gamma(x_0), \ \text{то} \ \tilde{x}(t, \gamma) \ -$ решения (1). Объединяя утверждения (8), (9), имеем для (1) модификацию теоремы эквивалентности [4]. Найдем в переменных t, x представление \tilde{C} -канонического преобразования эквивалентной (1) системы (2). Определим \tilde{C} равенствами

$$b(t'', x'') \cdot dx'' + h(t'', x'') dt \equiv c^{0} [b(t', x') \cdot dx + h(t', x') dt'] - H_{0} d\tau - d\Phi,$$
(10)

$$\tau = \tau(t, x), \quad \xi = \xi(t, x), \quad c^0 = \text{const} \neq 0, \quad \tau(t', x') = \tau(t'', x'') = \tau, \\ \forall t'' = \theta(t', x'), \quad x'' = y(t', x'),$$

где τ , ξ — канонические переменные ω [5], H_0 , Φ — произвольные функции. Действительно, переходя в тождестве (10) от t, x к τ , ξ , получим достаточное условие каноничности преобразования $\tau' \to \tau'' = \tau = \tau'$, $\xi' \to \xi''$ вида

$$P'' \cdot dQ'' = c^{0}P' \cdot dQ' - H^{0} d\tau - d\Phi^{0} \qquad (H^{0} = H_{0} + c_{0} - 1, \ \Phi^{0}(\tau, \xi', \xi'') = \Phi).$$

Частным случаем асинхронного преобразования (10) будет обобщенно-

каноническое C^0 -преобразование (11), сохраняющее каноничность (2) в новом времени т':

$$p' \cdot dq' - H' d\tau' = c^0 (p \cdot dq - H d\tau) - dF \ (\tau' = T(\tau, q, p), \ \xi' = y(\tau, q, p). \ (11)$$

При $c_0 = 1$, $H_0 = 0$, $\Phi_0 = -\tilde{S}$ из (7), (10) находим свойство (8) решения $x(t, x_0)$ системы (1). Поэтому эквивалентная (1) каноническая система (2) переходит на преобразовании $t_0 \to t$, $x_0 \to x(t, x_0)$ в канониче-

скую систему.

В [3] отмечено, что любая линейная неголономная или оптимальная управляемая динамическая система с интегральным инвариантом типа Пуанкаре—Картана является скрытой канонической. Отсюда следует, что она будет квазиканонической системой (1), обладающей инвариантом I_1^0 и динамическими свойствами (3), (6), (8), (9).

Пример. Двумерная неавтономная (или автономная) система Лагранжа

$$q = H_p$$
, $p = -H_q + f(t, q, p)$ $(H = H(t, q, p), \partial^2 H/\partial p^2 \neq 0, \Phi_x \stackrel{\triangle}{=} \partial \Phi/\partial x)$ (12)

есть квазиканоническая, ибо существуют решения b_1, b_2, h системы

$$h_p = \varrho H_p + b_{2t}, \quad h_q = \varrho (H_q - f) + b_{1t} \quad (\varrho \stackrel{\triangle}{=} b_{2q} - b_{1p}, \ \Delta R = \varrho^2)$$
 (13)

при условии, что форма $\omega^0 = b_1 dq + b_2 dp + h dt$ — класса 3. Это эквивалентно

$$\varrho \neq 0, h \neq (H_q - f) b_2 - H_p b_1 \ (\sim \omega^0 \neq 0 \text{ Ha } (12)).$$
 (14)

Система (13) совместна лишь тогда, когда $\rho = M$ — множитель (12), т. е. $M = -Mf_p$. Решения, удовлетворяющие (14), имеют вид

$$\varrho = \varrho^{0}(q_{0}, p_{0}) |\partial(q, p)/\partial(q_{0}, p_{0})|^{-1}, b_{1} = b_{1}^{0}(t, q, p),$$

$$b_2 = \int_{q_0}^{q} (b_{1p} + \varrho) dq + b_2^0(t, p),$$

$$h = \int_{q_0}^{q} [\varrho(H_q - f) + b_{1t}] dq + \int_{p_0}^{p} [\varrho H_p + b_{2t}] |_{q=q_0} dp + h^0(t),$$

где произвол функций ρ^0 , b_1^0 , b_2^0 , h^0 отмеченных аргументов ограничен условием (14).

ЛИТЕРАТУРА

- 5. Рашевский П. К., Геометрическая теория уравнений с частными производными, М.—Л., ОГИЗ, Гостехиздат, 1947, с. 142—168.
 6. Н w a C h u n g L e e, Proc. Roy. Soc. Edinburgh, ser. A, LXII, 237—247 (1947).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 30/XII 1981