EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 27. KÖIDE FÜÜSIKA * MATEMAATIKA. 1978, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ФИЗИКА * МАТЕМАТИКА. 1978, № 3

https://doi.org/10.3176/phys.math.1978.3.03

УДК 513.013

А. ФЛЯЙШЕР

РЕДУКТИВНЫЕ ОДНОРОДНЫЕ ПРОСТРАНСТВА И НЕАССОЦИАТИВНЫЕ АЛГЕБРЫ

§ 1. Предварительные сведения

Пусть G — связная группа Ли с алгеброй Ли $\mathfrak g$ и H — замкнутая подгруппа в G с подалгеброй Ли \mathfrak{h} . Однородное пространство M=G/Hназывается редуктивным [1,2], если в g существует такое подпространство ш, называемое редуктивным дополнением или оснащением, что $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ (прямая сумма) и $(AdH)\mathfrak{m}\subset\mathfrak{m}$. Локально (в терминах алгебр Ли) второе условие означает [h, m]

т, и тогда соответствующая пара (g, h) называется редуктивной парой. Известно, что G/H является редуктивным, например, всегда, когда Н компактна или полупроста ([1]). Следуя А. Сэйглу [3], фиксированное редуктивное дополнение ш можно наделить структурой неассоциативной антикоммутативной алгебры, полагая для $X, Y \in \mathfrak{m}$ произведение $X \cdot Y = [X, Y]_{\mathfrak{m}}$, где $[X, Y]_{\mathfrak{m}}$ — проекция скобки [X, Y] на подпространство \mathfrak{m} (аналогично: $[X, Y]_{\mathfrak{h}}$ — проекция скобки [X, Y] на \mathfrak{h}). Строение этой алгебры, которую мы будем обозначать через (т. .) или просто через т, тесно связано с геометрией соответствующего редуктивного пространства G/H [3, 4]. Однако алгебра m не является единственной неассоциативной алгеброй, связанной с G/H. В силу результата К. Номидзу [2], на редуктивном пространстве G/H с фиксированным разложением $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ существует биективное соответствие между множеством G-инвариантных связностей на G/H и множеством билинейных функций $\alpha: \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$, которые Ad(H)-инвариантны, т. е. с каждой G-инвариантной связностью на G/H связывается некоторая неассоциативная алгебра (\mathfrak{m}, α) , для которой $Ad(H) \subset \operatorname{Aut}(\mathfrak{m}, \alpha)$. Из всех инвариантных связностей на M = G/H выделяется естественная связность без кручення [2], для которой $\alpha(X,Y) = 1/2 \ X \cdot Y$. Алгеброй, соответствующей этой связности, является, очевидно, алгебра ш.

В дальнейшем метрику с естественной связностью без кручения будем обозначать буквой B. Однородное пространство G/H с такой метрикой называется естественно-редуктивным. Примером такого пространства является, в частности, однородное пространство, локально опреде-

ляемое парой Киллинга (g, h) [5].

Линейную группу голономии инвариантной связности α на однородном пространстве G/H будем обозначать через $\operatorname{Hol}(\alpha)$ и алгебру голономии через $\operatorname{hol}(\alpha)$. Если рассматривать только односвязные G/H, то $\operatorname{Hol}(\alpha)$ всегда связна, потому $\operatorname{Hol}(\alpha)$ = $\operatorname{exp}\operatorname{hol}(\alpha)$ и действие $\operatorname{Hol}(\alpha)$ на m равносильно действию $\operatorname{hol}(\alpha)$ на m . В данной работе все редуктивные однородные пространства предполагаются односвязными.

Определение 1. Односвязное однородное пространство G/H называется голономно неприводимым относительно связности а, если

hol (a) действует неприводимо на т.

Известная теорема Ж. де Рама [6], согласно которой всякое полное односвязное риманово многообразие изометрично прямому произведению односвязных голономно неприводимых римановых многообразий, стимулирует исследование голономно неприводимых пространств. Строение алгебры ш связано с голономной неприводимостью редуктивного *G/H* следующим результатом.

Теорема 1. (Сэйгл [³]). Пусть G/H — односвязное редуктивное однородное пространство с разложением g = h + m. Если $m^2 = m \cdot m \neq 0$ и G/H голономно неприводимо относительно естественной связности без кручения, то алгебра m проста. Обратно: если G/H является псевдоримановым пространством и m проста, то G/H голономно

неприводимо.

В случае риманова однородного пространства имеет место более

сильное утверждение.

Теорема 2. (Костант $[^7]$). Пусть G/H — односвязное риманово естественно-редуктивное однородное пространство. Оно голономно неприводимо относительно естественной связности без кручения тогда и

только тогда, когда G проста.

В настоящей работе мы продолжаем сравнительное изучение алгебр (\mathfrak{m},α) и \mathfrak{m} , начатое Б. Костантом [8], и выясняем взаимосвязь строения этих алгебр и соответствующего редуктивного пространства G/H, опираясь на результаты, полученные А. Сэйглом [4]. Основной результат: односвязное однородное естественно-редуктивное пространство при определенных условиях, накладываемых на инфинитезимальную структуру, разлагается в прямое произведение своих вполне геодезических подмногообразий или же голономно неприводимо (относительно естественной связности без кручения).

§ 2. Алгебры псевдоримановых связностей

Предложение 1. Пусть G/H — односвязное редуктивное однородное пространство с разложением $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ и \mathfrak{a} — инвариантная псевдориманова связность на G/H. Тогда простота алгебры \mathfrak{m} влечет простоту алгебры $(\mathfrak{m},\mathfrak{a})$.

Доказательство. Рассматриваемая связность а является связ-

ностью без кручения и потому

$$\operatorname{Tor}(X, Y) = \alpha(X, Y) - \alpha(Y, X) - X \cdot Y = 0. \tag{1}$$

Отсюда сразу следует, что (\mathfrak{m},α) — алгебра с ненулевым умножением. Действительно, если имеет место обратное, то из соотношения (1) получаем $X \cdot Y = 0$ для любых $X,Y \in \mathfrak{m}$, но тогда $\mathfrak{m}^2 = 0$, что противоречит простоте \mathfrak{m} . Если теперь (\mathfrak{m},α) содержит двусторонний идеал \mathfrak{n} , то опять же из (1) получаем противоречие: \mathfrak{n} является идеалом и в алгебре \mathfrak{m} .

Предложение 2. Пусть G/H — односвязное однородное пространство с компактной G и \mathfrak{m} — ортогональное дополнение κ \mathfrak{h} относительно положительно определенной квадратичной формы B на \mathfrak{g} . Тогда простота G влечет простоту алгебры (\mathfrak{m}, α) , где α — произвольная ин-

вариантная псевдориманова связность на G/H.

Доказательство. Пусть алгебра (\mathfrak{m},α) не проста, тогда не проста и алгебра \mathfrak{m} (предложение 1) и потому G/H голономно приво-

димо относительно естественной связности без кручения (теорема 1). Но это противоречит голономной неприводимости риманова редуктивного однородного пространства G/H с простой G относительно естественной связности без кручения (теорема 2).

 Π редложение 3. Пусть G/H — односвязное редуктивное несимметрическое пространство с инвариантной псевдоримановой связностью α . Если G/H голономно неприводимо относительно α , то алгебра

 (m, α) — npocta.

Доказательство. Если $\alpha(X,Y)=0$ для любых $X,Y\in\mathfrak{m}$, то $0=\operatorname{Tor}(X,Y)=-X\cdot Y$, т. е. G/H оказывается симметрическим, что противоречит условию. Пусть (\mathfrak{m},α) содержит собственный идеал. Тогда, согласно $[^3]$, она содержит собственный идеал \mathfrak{n} , инвариантный относительно hol (α) , что противоречит голономной неприводимости G/H.

Пусть $(\mathfrak{g},\mathfrak{h})$ — редуктивная пара с разложением $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$. Следуя А. М. Васильеву [9], назовем подалгебру $\mathfrak{g}'\subset\mathfrak{g}$ нормальной, если

$$g'=g' \cap h+g' \cap m$$
.

Такая подалгебра определяет в соответствующем пространстве G/H вполне геодезическое подмногообразие относительно связности, определяемой оснащением \mathfrak{m} . Оснащение \mathfrak{m} называется «проникающим \mathfrak{g} \mathfrak{g} » ([7]), если \mathfrak{g} редуктивном разложении $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ подалгебра $\mathfrak{h} = \mathfrak{m}$ \mathfrak{m} Таким оно является, в частности, в случае простой алгебры \mathfrak{h} ([10]). Следующая теорема дополняет результат \mathfrak{b} . Костанта ([7], теорема \mathfrak{b}) о голономной приводимости римановых однородных пространств.

Теорема 3. Пусть G/H — односвязное редуктивное несимметрическое однородное пространство с разложением $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ и $\mathfrak{m}-$ «проникающее в \mathfrak{g} » оснащение. Если G/H голономно неприводимо относительно естественной связности без кручения, то \mathfrak{g} не содержит собст-

венных нормальных идеалов.

Доказательство. В силу теоремы 1 алгебра \mathfrak{m} проста и пусть \mathfrak{g} содержит собственный нормальный идеал $\mathfrak{g}'=\mathfrak{g}'\cap \mathfrak{h}+\mathfrak{g}'\cap \mathfrak{m}$. Предполагая действие группы эффективным, можем считать $\mathfrak{g}'\cap \mathfrak{m}\neq 0$, так как в противном случае подалгебра \mathfrak{h} будет содержать идеал $\mathfrak{g}'\cap \mathfrak{h}$, являющийся идеалом и в \mathfrak{g} . По условию $[\mathfrak{g}',\mathfrak{m}]=[\mathfrak{g}'\cap \mathfrak{h}+\mathfrak{g}'\cap \mathfrak{m},\mathfrak{m}]\subset \mathfrak{g}'\cap \mathfrak{h}+\mathfrak{g}'\cap \mathfrak{m}$, и потому $[\mathfrak{g}'\cap \mathfrak{h},\mathfrak{m}]+[\mathfrak{g}'\cap \mathfrak{m},\mathfrak{m}]_{\mathfrak{m}}\subset \mathfrak{g}'\cap \mathfrak{m}$. Но $[\mathfrak{g}'\cap \mathfrak{h},\mathfrak{m}]\subset (\mathfrak{g}'\cap \mathfrak{h}+\mathfrak{g}'\cap \mathfrak{m})\cap \mathfrak{m}=\mathfrak{g}'\cap \mathfrak{m}$, следовательно, $[\mathfrak{g}'\cap \mathfrak{m},\mathfrak{m}]\subset \mathfrak{g}'\cap \mathfrak{m}$, $\Xi\mathfrak{m}=(\mathfrak{g}'\cap \mathfrak{m})\cdot \mathfrak{m}\subset \mathfrak{g}'\cap \mathfrak{m}$, \mathfrak{m} . е. $\mathfrak{g}'\cap \mathfrak{m}$ — идеал в \mathfrak{m} . Ввиду простоты \mathfrak{m} возможно лишь $\mathfrak{g}'\cap \mathfrak{m}=\mathfrak{m}$, но тогда $[\mathfrak{g}'\cap \mathfrak{h}+\mathfrak{m},\mathfrak{m}]\subset \mathfrak{g}'\cap \mathfrak{h}+\mathfrak{m}$ и необходимо $[\mathfrak{m},\mathfrak{m}]_{\mathfrak{h}}\subset \mathfrak{g}'\cap \mathfrak{h}$. По условию $[\mathfrak{m},\mathfrak{m}]_{\mathfrak{h}}=\mathfrak{h}$, что влечет $\mathfrak{g}'\cap \mathfrak{h}=\mathfrak{h}$. Полученное противоречие доказывает теорему.

§ 3. Об одном классе естественно-редуктивных пространств

Рассмотрим редуктивные однородные пространства G/H, для которых редуктивная структура задается подпространством

$$\mathfrak{m} = \{X \in \mathfrak{g} \mid B(X, Y) = 0 \ \forall Y \in \mathfrak{h}\}$$

и ограничение формы B на подалгебре $\mathfrak h$ невырождено. Поскольку в этом случае $B(X\cdot Y,Z)=B(X,Y\cdot Z)$ для любых $X,Y,Z\in\mathfrak m$, то G/H является естественно-редуктивным пространством [6].

Определение 2. Редуктивное однородное пространство G/H с фиксированным разложением $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ называется пространством с идеально ненулевым умножением в \mathfrak{m} , если алгебра \mathfrak{m} не содержит

идеалов с нулевым умножением.

Следующее предложение указывает на существование таких однородных пространств. Для его формулировки отметим, что на алгебре \mathfrak{m} , равно как и на произвольной конечномерной алгебре, можно определить форму Киллинга $\widetilde{B}(X,Y)$, полагая

$$\widetilde{B}(X,Y) = \operatorname{tr}(L(X)L(Y)),$$

где $L(X): \mathfrak{m} \to \mathfrak{m}, Y \to X \cdot Y$ для $X, Y \in \mathfrak{m}$.

Предложение 4. Пусть G — полупростая связная группа Ли u H — ее замкнутая подгруппа. Пусть B — форма Киллинга алгебры \mathfrak{g} , ограничение $B_{\mathfrak{h}}$ которой невырождено, u \mathfrak{m} — ортогональное дополнение κ \mathfrak{h} относительно B. Если ограничение формы B на \mathfrak{m} совпадает c формой Киллинга самой алгебры \mathfrak{m} , то G/H есть естественно-редуктивное пространство c идеально ненулевым умножением b \mathfrak{m} .

Доказательство. Пусть \mathfrak{n} — идеал в \mathfrak{m} , удовлетворяющий условию $\mathfrak{n}^2=0$. Выберем базис в \mathfrak{n} и дополним его до базиса в \mathfrak{m} . Тогда

для $X \in \mathfrak{n}, Y \in \mathfrak{m}$ преобразования L(X) и L(Y) примут вид

$$\begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix} \quad H \quad \begin{pmatrix} * & * \\ * & 0 \end{pmatrix}$$

соответственно. Следовательно, ${\rm tr}\;(L(X)L(Y))=0$ и потому $\widetilde{B}(\mathfrak{n},\mathfrak{m})=0$. Отсюда следует, что в случае невырожденности формы \widetilde{B} алгебра \mathfrak{m} не содержит идеалов $\mathfrak{n},$ удовлетворяющих условию $\mathfrak{n}^2=0$. Теперь наше утверждение будет вытекать из невырожденности ограничения формы Киллинга B алгебры \mathfrak{g} на \mathfrak{m} .

Прежде чем дать геометрическую характеристику введенных пространств, уточним формулировку известной теоремы \mathcal{K} . де Рама [6] на случай естественно-редуктивных римановых однородных пространств.

Теорема 4. Пусть M=G/H — односвязное риманово естественноредуктивное однородное пространство с разложением $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ и Φ — группа голономии римановой связности. Тогда

1) имеет место единственное с точностью до порядка разложение

$$\mathfrak{m} = \overline{\mathfrak{m}}_0 \oplus \overline{\mathfrak{m}}_1 \oplus \ldots \oplus \overline{\mathfrak{m}}_p$$
 (2)

в прямую сумму взаимно ортогональных Ф-инвариантных подпространств; Ф действует тривиально на $\overline{\mathfrak{m}}_0$ и неприводимо на $\overline{\mathfrak{m}}_j$ ($1 \leq j \leq p$); 2) имеет место соответствующее разложение $M = M_0 \times M_1 \times \ldots$

 $\dots \times M_p$ в прямое произведение римановых пространств таких, что $\overline{\mathfrak{m}_j}$ является касательным пространством для M_j (0 $\leq j \leq p$).

Заметим, что в разложении (2) каждое $\overline{\mathfrak{m}}_{j}(0\leqslant j\leqslant p)$ является идеалом в $\overline{\mathfrak{m}}$, так как $[\overline{\mathfrak{m}}_{j},\overline{\mathfrak{m}}_{j}]\subset \mathfrak{h}+\overline{\mathfrak{m}}_{j}$ и $\overline{\mathfrak{m}}_{i}\cdot\overline{\mathfrak{m}}_{j}=0$ для $i\neq j$ ([6], с. 213). Далее, всякий идеал с нулевым умножением $\overline{\mathfrak{m}}_{k}$ алгебры $\overline{\mathfrak{m}}$ является центральным (действительно, $\overline{\mathfrak{m}}_{k}\cdot\overline{\mathfrak{m}}=\overline{\mathfrak{m}}_{k}\cdot\overline{\mathfrak{m}}_{k}=0$) и потому алгебра $\overline{\mathfrak{m}}$ разложима в прямую сумму своего центра \mathfrak{z} и подалгебры \mathfrak{t} , не содержащей идеалов с нулевым умножением, подобно тому, как любая редуктивная алгебра Ли разложима в прямую сумму своего центра и полупростой подалгебры. В разложении (2) можно изменить порядок таким образом, чтобы $\mathfrak{z}=\overline{\mathfrak{m}}_{0}\oplus\ldots\oplus\overline{\mathfrak{m}}_{s}$ и $\mathfrak{t}=\overline{\mathfrak{m}}_{s+1}\oplus\ldots\oplus\overline{\mathfrak{m}}_{p}$

давали, соответственно, центр и полупростую подалгебру алгебры ш.

Итак, справедлива

Теорема 5. Пусть G/H — односвязное риманово естественно-редуктивное однородное пространство с фиксированным разложением $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$. Тогда $\mathfrak{m}=\mathfrak{z}\oplus\mathfrak{t}$, где \mathfrak{z} и \mathfrak{t} — идеалы в \mathfrak{m} , причем $\mathfrak{z}\cdot\mathfrak{m}=0$. Имеет место соответствующее разложение

$$G/H = G_1/H \times G_2/H$$
,

еде G_1/H — симметрическое пространство с касательным пространством \mathfrak{F} , а G_2/H — несимметрическое пространство с идеально ненулевым умножением в касательном пространстве \mathfrak{F} .

Из данной теоремы следует, что односвязные римановы естественноредуктивные однородные пространства с идеально ненулевым умножением в фиксированном редуктивном дополнении и образуют естественный класс редуктивных «максимально не симметрических» пространств.

T е о р е м a 6. Пусть G/H — односвязное естественно-редуктивное однородное пространство с метрикой B и идеально ненулевым умножением в редуктивном дополнении m. Если G/H голономно приводимо, то m является прямой суммой hold (B)-инвариантных простых идеалов

$$\mathfrak{m} = \mathfrak{m}_0 \oplus \mathfrak{m}_1 \oplus \ldots \oplus \mathfrak{m}_r,$$
 (3)

причем это разложение ортогонально относительно В и

- (a) $[\mathfrak{h}, \mathfrak{m}_i] \subset \mathfrak{m}_i$;
- (б) $[\mathfrak{m}_i, \mathfrak{m}_i] \subset \mathfrak{h} + \mathfrak{m}_i \quad (\mathfrak{m}_i \cdot \mathfrak{m}_i \subset \mathfrak{m}_i);$
- (B) $[m_i, m_j] = 0$, $i \neq j$; (i, j = 0, 1, ..., r).

Доказательство. В силу теоремы 1 алгебра $\mathfrak m$ содержит собственный идеал. Тогда множество собственных $D(\mathfrak h)$ -инвариантных идеалов алгебры $\mathfrak m$ не пусто. Пусть идеал $\mathfrak m_0$ минимален в этом множестве, т. е. $\mathfrak m_0 \neq 0$, и не существует идеалов, строго промежуточных между 0 и $\mathfrak m_0$. Пусть, далее, $\mathfrak m'_0$ обозначает ортогональное дополнение к $\mathfrak m_0$ относительно B, т. е. $\mathfrak m'_0 = \{X \in \mathfrak m \mid B(X,\mathfrak m_0) = 0\}$. В силу равенств

$$B([\mathfrak{m}'_0, \mathfrak{h}], \mathfrak{m}_0) = B(\mathfrak{m}'_0, [\mathfrak{h}, \mathfrak{m}_0]) = 0,$$

 $B(\mathfrak{m}'_0 \cdot \mathfrak{m}, \mathfrak{m}_0) = B(\mathfrak{m}'_0, \mathfrak{m} \cdot \mathfrak{m}_0) = 0$

оно также является $D(\mathfrak{h})$ -инварнантным идеалом в ш. Покажем, что $\mathfrak{m}_0 \cap \mathfrak{m}'_0 = 0$. Если это не так, то минимальность \mathfrak{m}_0 влечет включение $\mathfrak{m}_0 \subset \mathfrak{m}'_0$. Это означает, что $B(\mathfrak{m}_0,\mathfrak{m}_0) = 0$, откуда $B(\mathfrak{m}_0^2,\mathfrak{m}) = B(\mathfrak{m}_0,\mathfrak{m}_0 \cdot \mathfrak{m}) = 0$. Следовательно, $\mathfrak{m}_0^2 = 0$, вопреки условию. Итак, $\mathfrak{m}_0 \cap \mathfrak{m}'_0 = 0$, и потому \mathfrak{m} является прямой суммой \mathfrak{m}_0 и \mathfrak{m}'_0 . Равенство $B(\mathfrak{m}_0,\mathfrak{m}'_0) = 0$ влечет $0 = B(\mathfrak{m}_0,\mathfrak{m}'_0 \cdot \mathfrak{m}) = B(\mathfrak{m}_0 \cdot \mathfrak{m}'_0,\mathfrak{m})$. Но $B(\mathfrak{m}_0 \cdot \mathfrak{m}'_0,\mathfrak{h}) = 0$, потому $B(\mathfrak{m}_0 \cdot \mathfrak{m}'_0,\mathfrak{g}) = 0$ и $\mathfrak{m}_0 \cdot \mathfrak{m}'_0 = 0$. Следовательно, $[\mathfrak{m}_0,\mathfrak{m}'_0] \subset \mathfrak{h}$ и $B([\mathfrak{m}_0,\mathfrak{m}'_0],\mathfrak{m}) = 0$. Далее, $B([\mathfrak{m}_0,\mathfrak{m}'_0],\mathfrak{h}) = B(\mathfrak{m}_0,[\mathfrak{m}'_0,\mathfrak{h}]) \subset B(\mathfrak{m}_0,\mathfrak{m}'_0) = 0$. В итоге $B([\mathfrak{m}_0,\mathfrak{m}'_0],\mathfrak{g}) = 0$ и $[\mathfrak{m}_0,\mathfrak{m}'_0] = 0$.

Из включений $[\mathfrak{h},\mathfrak{h}] \subset \mathfrak{h}$, $[\mathfrak{h},\mathfrak{m}_0] \subset \mathfrak{m}_0$, $[\mathfrak{m}_0,\mathfrak{m}_0] \subset \mathfrak{h} + \mathfrak{m}_0$ вытекает, что подпространство $\mathfrak{h}_0 = \mathfrak{h} + \mathfrak{m}_0$ является подалгеброй Ли в g. Так как $B(\mathfrak{h}_0,\mathfrak{m}'_0) = 0$, то G/H_0 — естественно-редуктивное пространство, где H_0 — связная подгруппа в G, имеющая \mathfrak{h}_0 своей алгеброй Ли. Однородное пространство G/H_0 есть пространство с идеально ненулевым умножением в \mathfrak{m}'_0 . Действительно, если п — такой идеал в \mathfrak{m}'_0 , что $\mathfrak{n}^2 = 0$, то п является идеалом и в \mathfrak{m} , так как $\mathfrak{n} \cdot \mathfrak{m} = \mathfrak{n} \cdot (\mathfrak{m}_0 + \mathfrak{m}'_0) = \mathfrak{m} \cdot \mathfrak{m}'_0 \subset \mathfrak{n}$ (поскольку $\mathfrak{n} \cdot \mathfrak{m}_0 = 0$), что противоречит условию. Теперь,

если \mathfrak{m}'_0 проста, дальнейшее разложение невозможно. Если же \mathfrak{m}'_0 не проста, то условия теоремы наследуются пространством G/H_0 , и процесс продолжается до тех пор, пока \mathfrak{m} не разложится в прямую сумму простых идеалов, взаимно ортогональных относительно формы B. Так как алгебра голономии hol(B) связности, определяемой формой B, порождена всеми отображениями L(X) ([4]), то все \mathfrak{m}_i являются hol(B) инвариантными. Заключения (a)—(в) следуют непосредственно из доказательства.

Покажем, что полученное разложение (3) является аналогом разложения де Рама касательного пространства $T_0(M) = \mathfrak{m}$ односвязного

риманова естественно-редуктивного пространства М.

Теорема 7. Пусть M=G/H — односвязное риманово естественно-редуктивное однородное пространство с идеально ненулевым умножением в касательном пространстве $T_0(M)=\mathfrak{m}$. Тогда разложение (3) алгебры \mathfrak{m} является разложением де Рама касательного пространства

 $T_0(M)$.

Доказательство. Как было указано выше, в разложении де Рама (2) касательного пространства $T_0(M)=\mathfrak{m}$ каждое \mathfrak{m}_j является идеалом в \mathfrak{m} . Далее, так как риманова связность, определяемая положительно определенной формой B на \mathfrak{m} , совпадает с канонической связностью без кручения, то алгебра голономии hol(B) этой связности совпадает с алгеброй Ли, определяемой отображениями $L(X):\mathfrak{m}\to\mathfrak{m}$, $Y \mapsto X \cdot Y$ ([4]). Пусть некоторая алгебра \mathfrak{m}_j непроста. Так как в предположениях теоремы $\mathfrak{m}_j{}^2 \neq 0$, то \mathfrak{m}_j должна содержать собственный идеал \mathfrak{n}_j . В силу положительной определенности B на \mathfrak{m} подпространство

$$\overline{\mathfrak{m}'_j} = \{X \in \mathfrak{m} \mid B(X, \mathfrak{m}_j) = 0\}$$

представляет собой прямое слагаемое в $\mathfrak{m}(\mathfrak{m}=\mathfrak{m}_j\oplus\mathfrak{m}_j')$ и, в силу $\mathfrak{n}_j\cdot\mathfrak{m}_j'=0$, подпространство \mathfrak{n}_j является идеалом и в \mathfrak{m} , т. е. L(m) — приводимым подпространством, что противоречит неприводимости hol (B) на \mathfrak{m}_j . Следовательно, все идеалы \mathfrak{m}_j просты, и теперь утверждение теоремы следует непосредственно из результата о единственности разложения конечномерной неассоциативной алгебры в прямую сумму простых идеалов.

Теорема 8. Пусть G/H — односвязное естественно-редуктивное

однородное пространство. Согласно предположениям теоремы 6,

если
$$\mathfrak{m} = \bigoplus_{i=1}^{r} \mathfrak{m}_{i} -$$
разложение (3), то

(1) $g_i = [m_i, m_i] \mathfrak{h} + m_i$ являются идеалами в g; кроме того, если m «проникает g g», то

(2) $g = g_0 \oplus g_1 \oplus \ldots \oplus g_r$.

Доказательство. Так как каждое \mathfrak{m}_i является $D(\mathfrak{h})$ -инвариантным, то подпространства $\mathfrak{h}_i = [\mathfrak{m}_i, \mathfrak{m}_i]_{\mathfrak{h}}$ — идеалы в \mathfrak{h} ([7]), и потому $[\mathfrak{g}_i, \mathfrak{h}] = [[\mathfrak{m}_i, \mathfrak{m}_i]]_{\mathfrak{h}}$ — $[\mathfrak{m}_i, \mathfrak{m}_i]_{\mathfrak{h}}$ — $[\mathfrak{m}_i, \mathfrak{m}_i$

$$[\mathfrak{g}_i,\mathfrak{h}] = [[\mathfrak{m}_i,\mathfrak{m}_i]_{\mathfrak{h}} + \mathfrak{m}_i,\mathfrak{h}] \subset [\mathfrak{m}_i,\mathfrak{m}_i]_{\mathfrak{h}} + \mathfrak{m}_i.$$

Далее

$$[\mathfrak{m}_{i},\mathfrak{m}]\!=\![\mathfrak{m}_{i},\mathfrak{m}_{0}\!+\ldots\!+\!\mathfrak{m}_{r}]\!=\![\mathfrak{m}_{i},\mathfrak{m}_{i}]\subset [\mathfrak{m}_{i},\mathfrak{m}_{i}]_{\mathring{\mathfrak{h}}}\!+\!\mathfrak{m}_{i}\!=\!\mathfrak{g}_{i},$$

и, наконец,

$$\begin{aligned} & [[\mathfrak{m}_i,\mathfrak{m}_i]_{\mathfrak{h}},\mathfrak{m}] \subset [[\mathfrak{m}_i,\mathfrak{m}_i],\mathfrak{m}] \subset [[\mathfrak{m}_i,\mathfrak{m}],\mathfrak{m}_i] = \\ & = [[\mathfrak{m}_i,\mathfrak{m}]_{\mathfrak{h}} + \mathfrak{m}_i \cdot \mathfrak{m},\mathfrak{m}_i] \subset [[\mathfrak{m}_i,\mathfrak{m}]_{\mathfrak{h}} + \mathfrak{m}_i,\mathfrak{m}_i] \subset \\ & \subset [\mathfrak{m}_i,\mathfrak{m}_i]_{\mathfrak{h}} + \mathfrak{m}_i = \mathfrak{g}_i. \end{aligned}$$

Тем самым доказано, что $[\mathfrak{g}_i,\mathfrak{m}]\subset\mathfrak{g}_i$, вследствие чего подпространства д; являются идеалами в д. Далее,

$$\mathfrak{h} \!=\! \left[\mathfrak{m}, \mathfrak{m} \right]_{\mathfrak{h}} \!=\! \left[\sum_{i=0}^r \mathfrak{m}_i, \sum_{i=0}^r \mathfrak{m}_i \right]_{\mathfrak{h}} \!=\! \sum_{i=0}^r \left[\mathfrak{m}_i, \mathfrak{m}_i \right]_{\mathfrak{h}} \!=\! \sum_{i=0}^r \mathfrak{h}_i,$$

так как $[m_i, m_i] = 0$ при $i \neq j$. Покажем, что полученная сумма есть прямая сумма. Пусть $X \in \mathfrak{h}_i \cap \mathfrak{h}_i$ для некоторого $i \neq j$. Тогда $X \in \mathfrak{g}_i \cap \mathfrak{g}_i$ и потому

$$[X, \mathfrak{m}] \subset [X, \mathfrak{g}_0] + \ldots + [X, \mathfrak{g}_r] = 0.$$

В силу точности линейного представления изотропии $D(\mathfrak{h})$ имеем X=0, т. е. $\mathfrak{h}_i \cap \mathfrak{h}_j = 0$. Теперь $\mathfrak{h}=\mathfrak{h}_0 \oplus \mathfrak{h}_1 \oplus \ldots \oplus \mathfrak{h}_r$ и $\mathfrak{g}=$ $= g_0 \oplus g_1 \oplus \ldots \oplus g_r$

Аналогичная теорема для случая римановых естественно-редуктив-

ных пространств была получена Б. Костантом в [7].

Следствие. Пусть G/H — односвязное естественно-редуктивное однородное пространство с идеально ненулевым умножением в редуктивном дополнении т. Если G проста, то G/H голономно неприводимо относительно естественной связности без кручения.

Доказательство. Простота группы G влечет простоту алгебры т (вследствие результата теоремы 8), что, в свою очередь, указывает

нам на неприводимость G/H (теорема 1).

Как следует из теоремы 8, редуктивная пара (g, h) является прямой суммой своих подпар (g_i, h_i) [10] и, в силу соответствия между подпарами редуктивной пары (g, h) и вполне геодезическими подмногообразиями соответствующего редуктивного пространства G/H [9], имеет

Теорема 9. Пусть G/H — односвязное естественно-редуктивное голономно приводимое пространство с разложением $\mathfrak{g} = [\mathfrak{m}, \mathfrak{m}]_{\mathfrak{h}} + \mathfrak{m}$ и идеально ненулевым умножением в т. Тогда имеет место разложение

$$G/H = G_0/H_0 \times G_1/H_1 \times \ldots \times G_r/H_r$$

где каждое G_i/H_i является вполне геодезическим подмногообразием в G/H.

Автор благодарит Ю. Лумисте за внимание к работе.

ЛИТЕРАТУРА

1. Рашевский П. К. О геометрии однородных пространств. — Тр. семинара по векторному и тензорному анализу, 1952, вып. 9, с. 49—74.

2. Nomizu, K. Invariant affine connections on homogeneous spaces. — Amer. J. Math., 1954, v. 76, p. 33—65.

3. Sagle, A. On anticommutative algebras and homogeneous spaces. — J. Math. and Mech., 1967, v. 16, N 12, p. 1381—1393.

Sagle, A. On homogeneous spaces, holonomy and nonassociative algebras. — Nagoya Math. J., 1969, v. 32, June, p. 373—394.
 Фляйшер А. Г. Об одном классе редуктивных пространств. — Тр. геом. семинара, 1974, т. 6, с. 267—276.

Kobayashi, S., Nomizu, K. Foundation of differential geometry. New York—London, 1969, v. II, p. 210—316.
 Kostant, B. On differential geometry and homogeneous spaces II. — Proc. Nat. Acad. Sci., 1956, v. 42, p. 354—357.
 Kostant, B. On holonomie and homogeneous spaces. — Nagoya Math. J., 1957, v. 12, p. 31—54.

Васильев А. М. О вполне геодезических подмногообразиях однородных пространств. — Докл. АН СССР, 1959, т. 128, № 2, с. 223—226.
 Фляйшер А. Г. Заметки о редуктивных парах. — Уч. зап. Тартуск. гос. ун-та,

Информационно-вычислительный центр Министерства финансов ЭССР

1975, № 355, c. 27-34.

Поступила в редакцию 24/X 1977 .

A. FLJAIŠER

REDUKTIIVSED HOMOGEENSED RUUMID JA MITTEASSOTSIATIIVSED ALGEBRAD

Olgu M=G/H reduktiivne homogeenne ruum fikseeritud lahutusega $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$. On teada [²], et iga G-invariantne seostus α ruumil M tekitab mingi mitteassotsiatiivse algebra (\mathfrak{m} , α). Artiklis [⁴] saadud tulemusi kasutades on käesolevas töös uuritud reduktiivantulemusi M ja temale vastava algebra vastatsikuseid. Põhilist tähelepanu on pööratud reduktiivsetele homogeensetele ruumidele [6], mille hulgast on vaadeldud nulliteguriteta ideaalidega ruume m [5]. Niisugused homogeensed ruumid on väga sarnased Riemanni reduktiivsete ruumidega (teoreemid 8, 9). On märgitud, et kehfib puutuja ruumi T_0 (M) de Rhami lahutuse analoog.

A. FLAISHER

REDUCTIVE HOMOGENEOUS SPACES AND NON-ASSOCIATIVE ALGEBRAS

Let M = G/H be a reductive homogeneous space with a fixed decomposition g = h + m. It is well known ([²]) that for each G-invariant connection α on M there exists a non-associative algebra (\mathfrak{m}, α) corresponding to α . Using results of ([⁴]), the dependence between the structure of these algebras and the properties of the space M is studied in the present paper. The main part of the paper is devoted to naturally reductive homogeneous spaces ([⁶]). We pick out the class of spaces G/H, for which the algebra \mathfrak{m} does not contain ideals with zero-multiplication. Those spaces are similar to Riemannian reductive spaces (theorems 8, 9). In particular, the analogue of de Rham's decomposition of the tangent space $T_0(M)$ is obtained for them.