ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 25 ФИЗИКА * МАТЕМАТИКА. 1976, № 3

https://doi.org/10.3176/phys.math.1976.3.10

УДК 532.529

В. ЗЛОБИН, М. МООС

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ДИСКРЕТНОЙ ФАЗЫ В СИСТЕМЕ «ДВУХФАЗНАЯ СТРУЯ — ПОПЕРЕЧНЫЙ ПОТОК»

Оптический метод измерения распределения дискретной фазы или лазерный измеритель концентрации (ЛИК), предложенный в [1], зарекомендовал себя надежным и продуктивным методом для двухфазных потоков типа «газ — твердые частицы» с фиксированной или мало деформирующейся функцией распределения частиц по размерам, а именно: трубных течений, двухфазной струи [1], течений в соплах [2]. Расширение области применения ЛИК к потокам с деформирующейся функцией распределения частиц по размерам или, иначе говоря, к потокам, в которых средний размер частиц зависит от пространственной координаты, требует уточнения в системе расшифровки данных, получаемых методом ЛИК. В настоящей работе рассматриваются особенности применения ЛИК к системе «двухфазная струя — поперечный поток», т. е. к типу течения с деформирующейся функцией распределения частиц по размерам.

Оптический метод измерения распределения дискретной фазы основан на измерении интенсивности рассеянного под некоторым углом света и величины затухания опорного и рассеянного луча в оптически неоднородной среде. Интенсивность рассеянного под углом β света $I(\beta)$ связана с интенсивностью падающего луча I_0 и оптическими свойствами среды соотношением

$$I(\beta) = I_0 e^{-h} \iint \sigma(r_p) N(r_p) F(\varrho, \beta, m) d\varrho dv,$$
(1)

где $F(\varrho, \beta, m)$ — функция, характеризующая рассеивающую способность частиц, $\sigma(r_p)$ — миделево сечение частицы, $N(r_p)$ — числовая функция распределения частиц по размерам. $\varrho = 2\pi r_p/\lambda$ — дифракционный параметр, v — объем зондирования, $e^{-\hbar}$ — экспоненциальный член, учитывающий ослабление падающего и рассеянного луча. В дальнейшем рассматривается схема с малым углом рассеяния, в этом случае учет ослабления упрощается и соотношение (1) принимает вид

$$\frac{I(\beta)}{I_1} = \int \int \sigma(r_p) N(r_p) F(\varrho, \beta, m) d\varrho \, dv, \qquad (2)$$

где I_1 — интенсивность падающего луча после прохождения объема рассеивающей среды. Если средний размер частиц в исследуемом объеме постоянен, то из (2) следует

$$\overline{\varrho_s} = \overline{N_s} = \overline{I(\beta)/I_1},\tag{3}$$

где черта означает, что соответствующая величина отнесена к ее значению в характерной точке, а ϱ_s — плотность распределения дискретной фазы. В общем случае (2) может быть записано в виде (d_p — средний размер частиц в зондируемом объеме)

$$\overline{\varrho_s} = \frac{\overline{I(\beta)}}{I_1} \frac{\overline{d_p}}{\overline{f(\varrho)}}.$$
(4)

Раскрытие зависимости $f(\varrho)$ при условии m, $\beta = \text{const}$, возможное только экспериментально, выполнено на установке, описанной ниже. Измерялись распределение величины $I(\beta)/I_1$ и скорости дискретной фазы на выходе из трубы для монофракций со средним размером частиц 12, 16, 24, 32, 70 и 88 *мкм*. Полученные данные осреднялись по выходному сечению (обозначено знаком «тильда»), так что

$$f(\varrho) = f(\tilde{\varrho}) = \frac{d_p}{G_2} \frac{I(\beta) U_s}{I_4}.$$

Графическая интерпретация экспериментальных данных (рис. 1) показывает, что в области $\varrho > 150$ величина $I(\beta)/I_1 \sim Nd_p^2$, а при меньших ϱ соответственно $I(\beta)/I_1 \sim Nd_p$.

Соотношение (4) устанавливает связь между непосредственно измеряемыми методом ЛИК величинами и плотностью распределения дискретной фазы с точностью до функции, зависящей от размера частиц. Размер частиц, а точнее характер изменения среднего размера частиц, должен быть определен на основе специальных измерений или, в некоторых случаях, соответствующей постановкой эксперимента.

Экспериментальная установка (рис. 2) представляет собой аэродинамическую трубу отсосного типа с рабочей частью размером 350 × 300 мм (4), в которой

Рис. 1. Зависимость изменения $f(\rho)$ от дифракционного параметра, $\beta = 14^{\circ}$.

предусмотрены нижние окна для ввода зондов и боковые — для установки оптических стекол при измерении оптическими методами. Равномерность потока достигается с помощью конфузора (1), ханекомба (2), сетки (3) и диффузора (5). На выходе аэродинамической трубы установлены циклоны общей производительностью 6 000 $m^{3/4}$ и отсосный вентилятор ВВД-8. Струевая магистраль имеет в своем составе: нагнетающее устройство (вентилятор или компрессор), блок ротаметров (6), шнековые дозаторы (7), разгонную магистраль (8). Кроме того, установка снабжена рядом измерительных и контролирующих режим работы приборов.

На рис. 2 изображена также схема измерения потока массы дискретной фазы, включающая трехканальный зонд (11) с диаметром приемного отверстия 2 мм, баночки для сбора порошка (9), имеющие трехслойный фильтр (палаточный брезент, шерстяное сукно, саржа) и блок ротаметров (10). Измерения проводились в режиме изокинетического

293

Рис. 2. Схема экспериментальной установки.

стбора [³], а необходимая величина отсоса регулировалась с помощью вентиля по ротаметру (10) на основе известной скорости потока в зондируемом объеме. Магистраль измерения статического давления служила для контроля режима, т. к. измерение статического давления в данном типе течения связано с большими трудностями.

Схема оптической установки для измерения распределения дискретной фазы показана на рис. 3, а. В нее входят: лазер ЛГ-75 (1), диск с отверстиями, вращаемый двигателем синхронного типа для модуляции светового луча с частотой 1600 гц (2), поворотные зеркала (3), линзы для сужения светового луча и повышения его интенсивности (4, 5), полупрозрачная пластина (6), ограничивающая диафрагма диаметром 1 мм (7), собирающая линза (8), фотоумножители ФЭУ-68 (9-11), Рассеянный в телесном угле ω свет собирается линзой (8) и фокусируется на диафрагму $(0,4 \times 2,5 \text{ мм}) \Phi \ni V$ (9). Напряжение, снимаемое с нагрузки ФЭУ, проходит через узкополосный усилитель (12), имеющий шесть декад с общим коэффициентом деления 1 : 64, и записывается на потенциометре КСП-4 (13). Схемы каналов опорного I₀ и ослабленного І₁ лучей аналогичны. При переходе к новому сечению измерения происходит определенное изменение угла падения луча на оптические стекла (7), что заметно смещает световое пятно на диафрагме $\Phi \Im Y$ (10). Указанное обстоятельство вызывает необходимость в подстройке оптической схемы; наличие канала Іо облегчает ее.

Экспериментальная установка для измерения компонент скорости дискретной фазы является модификацией ЛДИС [⁴]. Схема установки показана на рис. 3, б. Она состоит из следующих элементов: лазера ЛГ-38 (1), поворотных зеркал (2), блока для расщепления исходного луча на два пучка примерно равной интенсивности и поворота плоскости их падения на 90° (3), фокусирующей линзы (4) F = 600 мм, ограничивающей диафрагмы (5), собирающей линзы (6), фотоумножителя ФЭУ-51 (7), широкополосного усилителя (8), спектроанализатора С4-25 (9) и

Измерение параметров дискретной фазы...

Рис. 3. Схема оптической установки для измерения распределения (*a*) и скорости (*б*) дискретной фазы.

генератора Г4-102 для подачи на С4-25 калибровочных меток (10). При измерении скорости частиц размером 50—100 мкм в зоне с малой концентрацией линза (4) снималась для увеличения числа полос интерференционной решетки, а фокусировка лучей осуществлялась только блоком (3).

Сопоставление с экспериментальными данными. Измерение зондовым методом позволяет определить поток массы тяжелой примеси qs, который связан с плотностью распределения Qs и скоростью U_s дискретной фазы соотношением $q_s = o_s U_s$. Применение зондового метода для изучения распределения дискретной фазы при вдуве двухфазной струи с тяжелой порошкообразной примесью в поперечный поток ограничивает ряд обстоятельств, из которых наиболее существенными являются следующие: необходимость определения величины и направления скорости непрерывной фазы; невозможность ориентации приемного отверстия зонда; большая погрешность измерений при малых концентрациях дискретной фазы и малой ее крупности. С другой стороны, оптические методы позволяют определять величины ρ_s и U_s с точностью до функции, зависящей от размера частиц. В какой мере это обстоятельство может затруднить интерпретацию результатов измерений оптическими методами можно видеть из рис. 4, где сопоставлены относительные профили потока массы тяжелой примеси, полученные зондовым (точки) и оптическими методами (линии) при вдуве монофракционных порошков со среднемассовым размером 16, 32 и 70 мкм; средняя скорость потока 9,5 м/сек; диаметр струи 15,8 мм, среднерасходная скорость 23,8 и 10,0 м/сек (при крупности 70 мкм), начальная расходная массовая концентрация 0,3 кг/кг. Штриховыми кривыми на профили $I(\beta) U_s/I_1$, рис. 4 показаны a сплошными $\rho_s U_s =$ $= I(\beta) U_s d_p / [I_1 f(\varrho)]$. Распределение частиц поперек потока определялось на основе профилей $I(\beta) U_s/I_1$ из условия, что частицы со среднемассовыми размерами примеси находятся в зоне максимума указанных профилей.

295

0,12 Sm

0.08

0

160

10-0.04

На рис. 5 сопоставлены кривые затухания относительного потока массы, определенные зондовым (точки) и оптическими методами (линии), причем соответствующие величины отнесены к среднему по сечению в устье струи. Аналогичная процедура была применена к вдуву полидисперсной примеси, представляющей собой равновесовую смесь порошков указанных

выше крупностей (рис. 6). И в этом случае наблюдается вполне удовлетворительное соответствие восстановленного на основании оптических измерений профиля потока массы дискретной фазы с измеренным зондовым методом.

Оптический метод измерения распределения дискретной фазы совместно с лазерным допплеровским измерителем скорости позволяет получать достоверную информацию об осредненных параметрах дискретной фазы при вдуве струи с тяжелой порошкообразной примесью узкофракционного состава в поперечный поток. Этот вывод не относится к зоне с малой концент-

рацией дискретной фазы, где размеры частиц значительно отличаются от среднего размера частиц примеси, а также к полидисперсной примеси. В этих случаях необходим пересчет данных с учетом действительного размера частиц в соответствии с уравнением (4) и дополнение рассмотренной схемы методом определения среднего размера частиц.

ЛИТЕРАТУРА

1. Злобин В. В., Розенштейн А. З., ПМТФ, № 1, 142 (1975).

Злобин В. В., Розенштейн А. З., Пите, зет, 142 (1975).
 Злобин В. В., Изв. АН СССР. МЖГ, № 4, 46 (1975).
 Гендриксон В., Злобин В., Лаатс М., Фришман Ф., Эпштейн А., Процессы переноса в турбулентных течениях со сдвигом, Таллин, 1973.
 Розенштейн А., Самуэль К., Изв. АН ЭССР, Физ. Матем., 23, 58 (1974).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 12/IX 1975

400

Рис. 5. Затухание потока массы дискретной фазы

480

Рис. 6. Профили потока массы дис-

кретной фазы в поперечном сечении

x = 200 мм при вдуве струи с полидисперсной примесью.

297

x.MM

V. ZLOBIN, M. MOOS

DISKREETSE FAASI PARAMEETRITE MÕÕTMINE SÜSTEEMIS KAHEFAASILINE JUGA – RISTVOOLUS

Kui raske lisandiga hiibne juga puhutakse ristvoolusesse, on tekkinud vooluses osakeste suuruse jaotuskõver tugevasti deformeerunud. Artiklis käsitletakse diskreetse faasi jaotumise optilise mõõtmise iseärasusi.

V. ZLOBIN, M. MOOS

MEASUREMENT OF PARAMETERS OF THE DISCRETE PHASE IN THE SYSTEM "TWO-PHASE JET — CROSS WIND"

The authors treat the specifity of using the optical method of measurements of distribution of discrete phase in two-phase jet developing in the cross wind, which is a typical example of flow with distribution function of particles strongly deformed in space.