EESTI NSV TEADUSTE ARADEEMIA TOIMETISED. 22. KÕIDE FÜÜSIKA * MATEMAATIKA. 1973, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 22 ФИЗИКА * МАТЕМАТИКА. 1973, № 3

https://doi.org/10.3176/phys.math.1973.3.07

УДК 535.343.2

А. МАЛЫШЕВА, В. ПЛЕХАНОВ

ОПТИЧЕСКИЕ ПОСТОЯННЫЕ И ЭКСИТОННЫЕ СОСГОЯНИЯ ФТОРИСТОГО СВИНЦА

В работе измерен спектр фундаментального поглощения тонких пленок фтористого свинца при 78° К в интервале энергий 3,5—12,0 эв. С длинноволновой стороны спектр заканчивается интенсивной полосой поглощения с максимумом при 5,71 эв; кроме того, в спектре имеются две полосы с максимумами при 6,73 и 8,60 эв. С помощью дисперсионных соотношений рассчитаны оптические постоянные *n*, ε₁, ε₂ и *R*. Используя выражение Эллиота для прямых разрешенных переходов, определена энергия переходов зона—зона. Она оказалась равной 6,2 эв.

Введение

Поиск активных материалов для оптических генераторов, квантовых счетчиков, дозиметров, детекторов ионизирующих излучений и других оптических приборов ведет к постоянному расширению класса исследуемых веществ. Как показано в ряде работ (напр., [¹⁻⁸]), перспективными с этой точки зрения являются фториды металлов второй группы (Ca, Sr, Ba, Cd), активированные редкоземельными металлами. Их исследование ведется широким фронтом. В частности, достаточно подробно изучены фундаментальные спектры поглощения и отражения этих веществ (см., напр., [⁹]) и проведены первые расчеты их зонной сгруктуры [^{10–12}].

К этому классу соединений можно отнести также фтористый свинец. Во-первых, он кристаллизуется в двух модификациях, одна из которых имеет кубическую решетку типа флюорита, как и перечисленные выше соединения, другая — орторомбическую. Во-вторых, он, как и указанные фториды, обладает высокой дисперсней [¹³].

В отличие от фторидов металлов второй группы фтористый свинец исследовался очень мало. Отчасти поэтому до сих пор нет единого мнения относительно температурного интервала, в котором стабильна та или иная его структурная модификация. Согласно одним авторам [^{13–18}], стабильной при низких температурах является орторомбическая фаза, согласно другим — кубическая [^{19, 20}]. Причем первые считают, что кубическую фазу, стабильную при комнатной температуре, можно получить, если быстро охлаждать кристалл начиная с температуры перехода. В табл. 1 по данным работы [¹⁶] приведены характеристики обеих модификаций.

Объектом большинства исследований по фтористому свинцу служила его кубическая модификация (β -PbF₂). Исследования инфракрасного поглощения [^{14, 21}], комбинационного рассеяния [^{21, 22, 15}], а также распространения ультразвука [^{23, 24}] позволили собрать относительно полную информацию о динамике решетки фтористого свинца. Некоторые характеристики ее представлены в табл. 2 (где α — по-

1	nn	2111101	7
1	uv	nuuu	- 1
-			

Таблица 2

Модификация PbF ₂	Темпера- тура, °С	Группа симметрии	Постоян- ная ре- шетки, Å	Число молекул в элемент. ячейке	Удельный вес, г/см ³
α Орторомбическая	< 315	$P_{mnb}(D^{16}_{2h})$	a = 3,897 b = 6,441 c = 7,648	1 1081 4 mLa	8,48
β Кубическая	> 315	$F_{m3m}(O^5_h)$	<i>a</i> == 5,940	4	7,569

ляризуемость, є — диэлектрическая электронная проницаемость, а остальные обозначения общеприняты). Как видно, для фтористого свинца характерно большое различие в значениях диэлектрических проницаемостей, что, как известно [²⁵], приводит к существенным поляронным эффектам.

Исследованию спектра фундаментального поглощения посвящена только одна работа [²⁶], в которой измерен спектр поглощения аморфного слоя PbF₂, полученного при 20° K, и того же слоя после прогрева до 335° К. Измерения ограничивались областью 4,5—6,4 *эв.* Рентгеноструктурный анализ показал, что в прогретых слоях

Физическая величина	Значение			
$ \begin{array}{c c} & \lambda = 5895,93 & \text{\AA} \\ \lambda = 5889,96 & \text{\AA} \\ \epsilon_{e} & \left\{ \begin{array}{c} \text{paccunt.} \\ \text{paccunt.} \\ \text{n3Mep.} \\ \text{paccutt.} \\ \text{n3Mep.} \\ \omega_{R}, \ \mathcal{CM}^{-1} \\ \omega_{Lo}, \ \mathcal{CM}^{-1} \\ \Theta_{D, \circ}, \ \mathcal{CM}^{-1} \\ \Theta_{D, \circ} & \text{K} \\ \alpha(\text{F}^{-}), \ \text{\AA}^{3} \\ \alpha(\text{Pb}^{2+}), \ \text{\AA}^{3} \end{array} \right. $	$\begin{array}{c} 1,76626\\ 1,76635\\ 2,51\\ 2,96\\ 27,4\\ 26,3\\ 257\\ 102\\ 337\\ 221,2\\ 1,04\\ 4,9\end{array}$	$\begin{bmatrix} 13\\ 13\\ 13\\ 14\\ 13\\ 14\\ 22\\ 14\\ 22\\ 14, 22\\ 14, 22\\ 14, 22\\ 23\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\$		

PbF₂ присутствуют обе модификации. Никаких количественных обработок полученного спектра произведено не было.

Изучение центров окраски в β -PbF₂ показало, что после γ -облучения при 77° К появляются полосы поглощения [27] при 850 (1,46), 722 (1,72) и 443 нм (2,7 эв). Полосы при 850 и 722 нм не дают сигнала ЭПР, тогда как полоса при 443 нм дает. Авторы работ [27, 28] предполагают, что за эту полосу ответствен электронный центр. Исследование примесных центров хрома и гадолиния в β -PbF₂ метоцом ЭПР [19, 20] позволило сделать вывод, что эти центры имеют как тригональную, так и кубическую симметрию.

Недавно нами [^{29, 30}] были измерены спектры отражения и люминесценции кристаллов PbF₂ [¹⁸] в интервале температур 4,2—295° К. Спектр люминесценции при возбуждении в области длинноволновой полосы поглощения и рентгеновскими лучами состоит из двух полос с максимумами около 4,0 и 2,25 эв. Коротковолновая полоса (4,0 эв) приписывалась свечению автолокализованного экситона.

Из приведенного выше обзора работ видно, что при том интересе, который фторид свинца должен вызывать, он исследован мало: неизвестны не только расчеты зонной структуры фтористого свинца, но даже спектры фундаментального поглощения. Целью настоящей работы является продолжение исследований фтористого свинца, начатых в [^{29, 30}], в частности — исследований его фундаментального поглощения в широкой области спектра.

287

Методика и результаты эксперимента

Установка для получения тонких слоев в вакууме, техника определения их толщины, криостаты и система регистрации сигнала описывались нами ранее [³¹]. В качестве подложки использовались пластинки кристаллического LiF. Рентгенографические исследования тонких слоев PbF₂, полученных при низких температурах, показали [²⁶], что при температурах выше 180° К происходит спонтанная кристаллизация слоя. В нашем случае подложка находилась при комнатной температуре ($\approx 280^{\circ}$ K); кроме того, перед измерениями слои некоторое время выдерживались в вакууме при той же температуре, что можно рассматривать как отжиг. Таким образом, слои имели хорошую кристаллическую структуру.

Спектры поглощения измерялись при комнатной температуре и при 78° К на вакуумном монохроматоре ВМ-1. Исследуемый объект помещался в вакуумном пространстве криостата, соединенного с монохроматором через окно из LiF. Поглощение измерялось относительно чистой иластинки из LiF той же толщины, что и подложка. Рассеяние от тонкнх слоев не учитывалось.

Рис. 1. Спектр поглощения тонкого слоя PbF₂ при 293 (1) и 78° K (2).

Как видно из рис. 1, спектр поглощения PbF₂ при комнатной температуре состоит из узкой длинноволновой полосы с максимумом при 5,66 эв и ряда коротковолновых полос с максимумами при 6,8; 8,6; 10,5 и 11,2 эв. Кроме того, наблюдаются особенности при энергиях 7,5; 7,8; 9,2; 9,7 и 10,2 эв. В области 6—6,2 эв отчетливо видна ступенька.

При понижении температуры до 78° К происходит сужение длинноволновой полосы поглощения (при 78° К $\Delta E = 0,17$ эв) и смещение ее в коротковолновую сторону до $E_{\rm M} = 5,71$ эв с $dE_{\rm M}/dT = -0,00022$ эв/град, что хорошо совпадает с величиной, полученной в работе [²⁶]. При 78° К длинноволновая полоса симметрична, хотя при комнатной температуре наблюдается асимметрия (0,02 эв). В остальных областях спектра с понижением температуры происходит только возрастание поглощения в максимумах полос. Значение коэффициента поглощения в максимуме длинноволновой полосы составляет $\varkappa_{\rm M} = 5,3 \cdot 10^6$ см⁻¹.

Анализ Крамерса-Кронига

Хорошо известно (см., напр., [³²]), что наиболее общими дисперсионными соотношениями, дающими интегральную связь между показателем преломления и коэффициентом поглощения, являются формулы Крамерса—Кронига

$$n(\omega_p) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\xi k(\xi) d\xi}{\xi^2 - \omega_p^2},$$
 (1)

где интеграл понимается в смысле главного значения. Чтобы получить истинное значение показателя преломления $n(\omega_p)$, необходимо знать значения коэффициента поглощения $k(\xi)$ в интервале частот $\xi = 0 \div \infty$. Экспериментально можно измерить только конечный интервал спектра, поэтому формула (1) дает правильное расположение максимумов в спектре $n(\omega)$, но не может дать истинных значений n [^{33, 34}]. В физике высоких энергий (см., напр., [³⁵]) для определения $n(\omega)$ используется вариант формулы (1), который дает возможность найти истинные значения n в широком спектральном интервале по ограниченному спектральному интервалу k

$$n(\omega_p) = n(\omega_0) + \frac{2}{\pi} (\omega_p^2 - \omega_0^2) P \int_0^\infty \frac{\omega' k(\omega') d\omega'}{(\omega'^2 - \omega_0^2) (\omega'^2 - \omega_p^2)}, \quad (2)$$

где ω₀ — значение частоты, на которой определено абсолютное значение показателя преломления (очень часто это — дублет желтой линии натрия). Для PbF₂ мы

нагрия). Для Рог $_2$ мы провели расчеты $n(\omega)$ по формулам (1) и (2), тде использовалось значение $n(\omega_0)$, взятое из табл. 2. Соответствующие кривые приведены на рис. 2.

Учитывая, что оптическими постоянными для неполяризованного света являются комплексный показатель преломления N = n + ik и комплексная диэлектрическая постоянная $\varepsilon =$ $= N^2 = \varepsilon_1 + i\varepsilon_2$ (в случае анизотропных сред они являются тензорами) [^{36, 37}], получим

Найденный таким образом спектр $\varepsilon_2(E)$ позволяет провести прямое сравнение с теоретически рассчитанной плотностью состояний dN/dE, так как

$$\mathfrak{s}_{2}(\omega) \approx \frac{2\pi h e^{2}}{m\omega} \sum_{ij} f_{ij} \frac{dN}{dE_{ij}},$$
(4)

тде fij — сила осциллятора перехода из i-зоны в j-зону.

5 ENSV TA Toimetised F * M-3 1973

А. Малышева, В. Плеханов

Рис 3. Спектральные зависимости показателей поглощения (k) и преломления (n).

Расчет оптических постоянных проводился на ЭВМ «Наири» по программе, аналогичной использованной в [^{33, 34}] для расчета оптических постоянных PbCl₂ и PbBr₂, но с учетом указанных выше изменений.

На рис. 3—5 приведены спектральные распределения следующих величин: k, n, ɛ₁, ɛ₂ и коэффициента отражения R. Положения максимумов полос даны в табл. 3.

Обсуждение результатов

Как видно из рис. З. форма длинноволновой полосы у спектральной зависимости k симметрична, с коротковолновой стороны наблюдаются уменьшение поглощения и затем характерная ступенька, которую обычно связывают с началом переходов зона-зона. Как правило, провал COпровождается асимметрией полосы поглощения, и в этом случае

форма последней описывается аналитическим выражением из теории Фано [³⁵]. Однако в нашем случае полоса симметрична и хорошо описывается формулой Гаусса

$$k(E) = k(E_{\rm M}) \exp\left[-\frac{(E - E_{\rm M})^2}{2\sigma^2}\right], \qquad (5)$$
$$\sigma = \frac{L}{2\sqrt{2\ln 2}},$$

где L — полуширина полосы поглощения (при T = 78° K L = 0,17 эв). Несовпадение длинноволновой части гауссовой кривой и экспериментальной (соответственно кривые 2 и 1 на рис. 6), возможно, объясняется тем, что, как и для многих других соединений (см., напр., [^{9, 36, 37}]), длинноволновый хвост поглощения подчиняется правилу Урбаха.

290

Оптические постоянные и экситонные состояния фтористого свиниа

Таблица 3

291

		E ₁	Ступень	E_2	E_3	E4	E ₅
0000	BAR ENTS	ana en rea	Actual Contract	(A . An	Эв	105 R072011- (102	one empused
nd k e ₂ R	293° K 78° K 78° K 78° K 78° K 4,2° K	5,66 5,71 5,71 5,7 5,65 5,675; 5,725	$ \begin{array}{c} 6,1\\ 6,1\\ 6,1\\ 6,1\\ 6,05 \end{array} $	6,8 6,75 6,7 6,57 6,55	8,6; 9,1 8,6; 8,9; 9,15 8,57; 8,9; 9,2 8,50; 8,80; 9,20 8,50; 8,90; 9,20	$\begin{array}{c} 9,8;10,2;10,8\\ 9,6;10,0;10,5\\ 9,6;10;10,5\\ 9,6;9,9;10,45\\ 9,6;9,9;10,4\end{array}$	11,2; 11,6 11,15; 11,4 11,17; 11,3 11,1; 11,4 11,17; 11,4

Сила осциллятора длинноволновой полосы рассчитывалась по формуле

$$f = \frac{1}{n_i} 0.87 \cdot 10^{17} \frac{n}{(n^2 + 2)^2} \varkappa_{\rm M} \cdot \Delta \nu, \tag{6}$$

где n_i — число поглотителей. Подставляя значения жм = 5,3 · 106 $c M^{-1}$, полуширины $\Delta y =$ = 0,17 эв и n = 2,14, получим силу осциллятора на одну молекулу PbF₂, pabhylo f = 0.18.

Согласно теории Эллиота [39], в случае прямых и разрешенных переходов зона-зона нарастание коэффициента поглощения в спектральном интервале, соответствующем этим переходам, должно подчиняться следующему правилу:

R PbF. 0.15 0 hv Рис. 5. Спектр отражения. 1 — рассчитанный по формуле R= (n-1)²+h² при 78°К: измеренный при 4,2°К. Значения козффициента отражения даны в относительных единицах.

 $k \sim (E - E_{\sigma})^{1/2}$ ИЛИ $\varepsilon_2(E) \sim (E - E_g)^{1/2}$

На рис. 7 представлена зависимость $[\varepsilon_2(E)]^2$ от энергии фотонов. * Как видно из рисунка, в области 6,25-6,40 эв указанная квадратичная зависимость выполняется хорошо и ее экстраполяция до оси абсцисс дает энергию переходов зона—зона, равную Eg = 6,2 эв. В таком случае энергия связи экситона, соответствующего длинноволновой полосе поглощения, составляет $\Delta E_{\rm exc} = 0,49$ эв. Судя по литературным данным, спектр фотопроводимости фтористого свинца пока неизвестен, однако, как показали наши измерения спектров люминесценции [29, 30], при возбуждении в длинноволновой полосе поглощения наблюдается безынерционное свечение, которое связано, по-видимому, с излучательной аннигиляцией экситона, а не с рекомбинацией электронно-дырочных пар.

^{*} Отклонение от прямой линии в длинноволновой области, возможно, объясняется переходами на высшие уровни экситона, структура которых не наблюдается при 78° К.

Исходя из модели экситона Ванье, можно оценить некоторые параметры нижайшего экситонного состояния. Легко видеть, что $\Delta E_{\rm exc} \gg \hbar \omega_{LO}$ (см. табл. 2) и, следовательно, согласно теории [^{40, 41}], при проведении таких оценок нужно использовать оптическое значение диэлектрической постоянной, т. е. $\varepsilon = n^2$. Вместе с тем, из спектрального распределения *n* (см. рис. 2) видно, что в области высших экситонных состояний и в области начала переходов зона—зона *n* имеет меньшую величину, чем в области прозрачности. Для вычисления параметров экситона разумно взять, как нам кажется, некоторое эффективное зна-

 наблюдаемая экспериментально; 2 — рассчитанная по формуле (5); 3 — начало межзонного поглощения.

чение $\varepsilon = n^2$ (при n = 1,6). Тогда, согласно формализму теории Ванье, получим значения приведенной массы экситона $\mu = 0,21 m_e$ и радиуса экситона $r_1 = 6,5$ Å.

Рис. 7. Интерпретация прямых разрешенных переходов в области энергий 5,9—6,6 эв.

Отсутствие расчета зонной структуры затрудняет интерпретацию природы пиков, однако в ионном приближении дело облегчается, поскольку имеются, с одной стороны, расчет зонной структуры фторидов Ca, Sr, Ba [^{10–12}], а с другой — интерпретация спектров фундаментального поглощения PbCl₂ и PbBr₂ [^{31, 33, 34}].

Спектры поглощения фторидов щелочноземельных металлов заканчиваются широкими экситонными полосами, расположенными в области 11,2; 10,6; 10,1 эв и состоящими из двух (CaF₂) или пяти (SrF₂ и BaF₂) подполос [⁹]. В последнем случае две самые длинноволновые подполосы связываются с созданием экситонов в Г-точке зоны Бриллюэна, остальные три — с созданием экситонов в Х-точке. Оценка ширины запрещенной зоны с помощью водородоподобной модели экситонов дала при комнатной температуре для CaF₂, SrF₂ и BaF₂ значения E_g , соответственно равные 12,11; 11,24 и 10,48 эв [⁹]. Если исходить из результатов квантовомеханического расчета зонной структуры MeF₂ (Me-Ca, Sr, Ba) [^{11, 12}] и экспериментальной оценки ширины запрещенных зон по пороговым энергиям возбуждения рекомбинационной люминесценции [⁴²], то получаются несколько отличные значения E_g :

292

Оптические постоянные и экситонные состояния фтористого свинца

Walterory or the land was graded in the second of the second se							
Baby W	Е ₁ , Эв	$\begin{array}{c} \Delta E_{\rm exc},\\ \boldsymbol{\mathcal{B}} \boldsymbol{\mathcal{B}} \end{array}$	Е _в , Эв	ε _e	٤s	Источник	
$\begin{array}{c} CaF_2\\ SrF_2\\ BaF_2\\ PbF_2\\ PbCl_2\\ PbBr_2 \end{array}$	$11,2 \\10,56 \\10,16 \\5,71 \\4,69 \\3,99$	$\begin{array}{c} 0,6\\ 0,5\\ 0,6\\ 0,49\\ 0,15\\ 0,23\end{array}$	$12,11 \\ 11,24 \\ 10,48 \\ 6,2 \\ 5,38 \\ 4,34$	2,045 2,07 2,16 2,51 2,228 2,478	6,7 6,6 7,33 27,4 43 30	[9] [9] [13, 14] [33] [33]	

Сравнение полученных характеристик PbF_2 с соответствующими характеристиками MeF_2 обнаруживает заметное их различие: длинноволновая граница спектра фундаментального поглощения PbF_2 смещена по отношению к соответствующей границе для MeF_2 в длинноволновую сторону больше, чем на 4 эв; величина E_g для PbF_2 меньше, чем для MeF_2 на 4,3—6 эв; полуширина длинноволновой полосы поглощения PbF_2 примерно в 3 раза меньше полуширин соответствующих полос в спектрах поглощения MeF_2 , причем эти полосы заметно различаются и по структуре; различаются также численные значения величин ε_e и ε_s (см. табл. 4). Все эти различия обусловлены разным строением электронных оболочек PbF_2 и фторидов Ca, Sr и Ba.

С другой стороны, сравнение экситонных параметров и значений диэлектрических постоянных в ряду ** PbF2, PbCl2 и PbBr2 показы-вает их большое сходство. Ранее [29] при измерении спектров отражения орторомбических кристаллов [18] галоидных солей свинца было найдено, что длинноволновые экситонные полосы обладают дублетной структурой. Величина расщепления составляет 0,05; 0,044 и 0,03 эв для PbF₂ (см. рис. 5), PbCl₂ и PbBr₂ соответственно. На основе анализа спектров отражения PbCl2 в поляризованном свете, а также люминесценции нами в [29-31] была предложена модель катионного экситона (см. также [35, 43-45]). Согласно этой модели длинноволновая экситонная полоса поглощения связывалась с возбуждением катиона благодаря переходу ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ ($A_{1g} \rightarrow B_{1,2,3u}$). Наблюдаемая структура объяснялась снятием орбитального вырождения кристаллическим полем симметрии группы D_{2h}, неприводимые представления которой все одномерны. В работе [33] высказывалось также предположение, что длинноволновый экситонный пик следует связывать с переходом в Г-точке первой зоны Бриллюэна. Как показали впоследствии расчеты зонной структуры галоидных солей таллия [44, 45], длинноволновые полосы поглощения которых приписывались катионным экситонам большого радиуса, самая верхняя валентная зона образована в основном из s-волновых функций таллия (в точке X; в Г-точке имеется большая примесь р-волновых функций галоида), а нижайшая зона проводимости - из p-волновых функций таллия.

В случае PbF₂ найденная величина расщепления не дает возможности сднозначно установить природу экситонной полосы поглощения, так как спин-орбитальное расщепление уровней иона фтора равно 0.05 эв. Однако одинаковая электронная структура всех трех галоидных солей свинца заставляет отдать предпочтение модели катионного экситона. Следует отметить, что в случае PbF₂ при образовании валент-

Таблица 4

^{**} Для оценки параметров экситона и для сравнения ε_е и ε_s мы используем величины, определенные для β-PbF₂, предполагая, что эти характеристики близки по своим значениям для обеих модификаций фтористого свинца.

ной зоны больший по сравнению с PbCl₂ и PbBr₂ вклад в ее состояния будут давать р-функции аниона.

При интерпретации фундаментального поглощения PbCl₂ и PbBr₂ [34] нами использовалась величина электростатического расщепления уровней иона свинца в решетке, равная 1,8 эв [46], хотя для свободного иона она равна 3,8 эв [47]. Из табл. З видно, что разность между пиками E_3 и E_1 составляет величину 2,94 эв, а разность между E_3 и E_2 — 1,8 эв. Возможно, что Ез и Е2 — компоненты электростатического расщепления уровней иона свинца. Богатая структура спектра поглощения может быть объяснена также тем, что все термы иона свинца 3P1, 3P2, ¹P₁ в поле орторомбической симметрии D_{2h} должны расщепляться.

Детальная интерпретация особенностей спектра затруднительна, еднако следует отметить, что большое значение коэффициента поглощения в максимумах указывает на их экситонную природу, а не на особенность межзонной плотности состояний [36]. Однозначная интерпретация возможна при наличии рассчитанной зонной структуры.

Авторы искрение благодарны Р. А. Кинку за предоставленную возможность использовать вакуумный монохроматор ВМ-1, а также Г. С. Завту за помощь при составлении программы для ЭВМ и обсуждение результатов. Считаем своим приятным долгом поблагодарить Г. Г. Лийдья за интерес к работе и постоянные дискуссии.

ЛИТЕРАТУРА

- 1. Ананьев Ю. А., Галактионова Н. М., Мак А. А., Седов Б. М.,
- Опт. и спёктр., 10, 911 (1964). 2. Конюхов В. К., Марченко В. М., Прохоров А. М., Опт. и спектр., 20, 531 (1966).
- 20, 531 (1966).
 Жеков В. И., Кулевский Л. М., Мудрина Т. М., Прохоров А. М., Смирнов В. В., Радиотехн. и электрон., 15, 2130 (1970).
 Каминский А. А., Ли Л., Ж. прикл. спектр., 12, 35 (1970).
 Каминский А. А., Опт. и спектр., 31, 938 (1971).
 Еsterowitz L., Noonan J., Appl. Optics, 7, 2053 (1968).
 Farukhi M., Swinehart C., IEEE Trans. Nucl. Sci., 18, 200 (1971).
 Lucke W. H., J. Appl. Phys., 42, 3004 (1971).
 Tomiki T., Miyata T., J. Phys. Soc. Japan, 27, 656 (1969).
 Старостин Н. В., ФТТ, 11, 1624 (1969).
 Старостин Н. В., Захаров В. К., Опт. и спектр., 33, 87 (1972).
 Старостин Н. В., Чеботарева Т. Е., Захаров В. К., Опт. и спектр., 33, 262 (1972).

- 33, 262 (1972).
- 13. Jones D. A., Proc. Phys. Soc., B68, 165 (1955).
- 14. Axe J. D., Gaglianelo J. W., Scardefield J. E., Phys. Rev., 139, A1211 (1965).
- 15. Srivastava R., Lauer H. V., Chose L. L., Bron W. E., Phys. Lett., 36A, 333 (1971).

- 333 (1971).
 16. Schmidt D. D., Vedam K., J. Phys. Chem. Solids, 27, 1563 (1966).
 17. Ketelaar J. A. A., Zs. Kristal., 84, 62 (1933).
 18. Беляев Л. М., Кошуашвили М. В., Чернышев К. С., Горштейн Г. И., Нечаева В. С., Рост кристаллов, 3, 338 (1961).
 19. Гильфанов Ф. З., Зарипов М. М., Ливанова Л. Д., Столов А. Л., Степанов В. Г., ФТТ, 10, 324 (1968).
 20. Абдулсабиров Р. Ю., Заитов М. М., Зарипов М. М., Ливанова Л. Д., Степанов В. Г., ФТТ, 11, 3549 (1969).
 21. Denham P., Field G. R., Morse P. L., Wilkinson G. R., Proc. Roy. Soc. (London), A317, 55 (1970).
- Denham P., Fleid G. R., Morse P. L., Wilkinson G. R., P Soc. (London), A317, 55 (1970).
 Krishnamurty N., Soots V., Canadian J. Phys., 48, 1104 (1970).
 Wasilik J. N., Wheat M. L., J. Appl. Phys., 36, 791 (1965).
 Hart S., J. Phys., D: Appl. Phys., 3, 430 (1970).
 Fowler W. B., Phys. Rev., 151, 657 (1966).
 Best K.-J., Phys. Kondens. Materie, 1, 316 (1963).
 Rose B. F., Schneider E. E., Phys. Lett., 34A, 27 (1971).
 Rose B. F., J. Phys. C: Solid State Phys., 4, L91 (1971).

- Лийдья Г. Г.. Добржанский Г. Ф., Плеханов В. Г., Тр. ИФА АН ЭССР, № 39, 64 (1972).
 Liidja G., Plekhanov VI., Preprint FAI-17, Tartu, 1972; J. Luminescence, 6,
- 71 (1973). 71 (1973). йдья Г., Плеханов В., Малышева А., Изв. АН ЭССР, Физ. Матем., 31. Лийдья Г., Пл 19, 328 (1970).
- 32. Ландау Л. Д., Лифшиц Е. М., Электродинамика сплошных сред, М., 1957, c. 324.
- 33. Лийдья Г. Г., Плеханов В. Г., Опт. и спектр., 32, 86 (1972); Изв. АН ЭССР, Физ. Матем., 21, 193 (1972). 34. Малышева А. Ф., Плеханов Вл. Г., Опт. и спектр., 34, 527 (1973). 35. Bachrach R. Z., Brown F. C., Phys. Rev., B1, 818 (1970).

- 36. Филипс Дж., Оптические спектры твердых тел, М., 1968.

- 36. Филипс Дж., Оптические спектры твердых тел, М., 1968.
 37. Тауц Я., Оптические свойства полупроводников, М., 1967.
 38. Fano U., Phys. Rev., 124, 1866 (1961).
 39. Elliot R. J., Phys. Rev., 108, 1384 (1957).
 40. Нокс Р., Теория экситонов, М., 1966.
 41. Маћапti S. D., Vагта С. М., Phys. Rev. Lett., 25, 1115 (1970).
 42. Калдер К. А., Малышева А. Ф., Опт. и спектр., 31, 252 (1971).
 43. Grant A. J., Liang M. Y., Joffe A. D., Phil. Mag., 22, 1129 (1970).
 44. Inoue M., Okazaki M., J. Phys. Soc. Japan, 30, 582 (1971); Там же, 31, 1313 (1971).
 45. Overhof H., Treusch J., Solid State Comm., 9, 53 (1971).
 46. Гиндина Р. И., Маароос А. А., Опт. и спектр., 26, 474 (1969).
 47. Bucher-Goudsmit, Atomic Energy States, N. Y.-London, 1932.

- 47. Bucher-Goudsmit, Atomic Energy States, N. Y.-London, 1932.

Институт физики и астрономии Академии наук Эстонской ССР

Поступила в редакцию 1/XII 1972

A. MALOŠEVA, V. PLEHHANOV

PbF2 OPTILISED KONSTANDID JA EKSTSITONSEISUNDID

Vedela lämmastiku temperatuuril mõõdeti õhukeste PbF₂-kihtide neeldumispektrid vahemikus 3,5-12 eV. Peale pikalainelise riba $E_{max} = 6,71$ eV esinevad neeldumisspektris ribade E = 6,8; 8,6; 10,5 ja 11,2 eV. Kramersi-Kronigi meetodil arvutati PbF₂ opti-lised konstandid k, n. ϵ_1, ϵ_2 ja R. Optiliste konstantide spektraalset sõltuvust käsitletakse katioonekstsitoni mudeli järgi (Pb⁺⁺ ergastus).

A. MALYSHEVA, V. PLEKHANOV

OPTICAL CONSTANTS AND EXCITON STATES IN PbF₂

Absorption spectra of thin PbF₂ films have been measured in the energy region 3.5-Absorption spectra of thin PDr₂ mins have been measured in the energy region 3.5— 12 eV at LNT. Besides the long wavelength band with $E_{max} = 6.71$ eV there are bands peaked at E = 6.8; 8.6; 10.5 and 11.2 eV. Optical constants k; n; ϵ_1 ; ϵ_2 and **R** were derived via Kramers-Kronig analysis. At LHeT (see also [³¹]) the long wavelength exciton peak in the reflectivity spectrum is split into two components with a gap of 0.050 eV. The spectral dependence of optical constants is discussed in terms of the "cation exciton" model (excitation of Pb⁺⁺).