EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 20. KÕIDE FOOSIKA * MATEMAATIKA. 1971, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 20 ФИЗИКА * МАТЕМАТИКА. 1971, № 3

https://doi.org/10.3176/phys.math.1971.3.07

УДК 523.035.338

Т. ФЕКЛИСТОВА

РАСЧЕТ ЛИНИИ СШ ДЛЯ ОБЛАСТИ ВАКУУМНОГО УЛЬТРАФИОЛЕТА В-ЗВЕЗД

Изучение возбужденных состояний иона СІІІ, дающих линии в вакуумной ультрафиолетовой области спектра, представляет для астрофизики уже не только теоретический интерес. При внеатмосферных наблюдениях δ и π Скорпиона [¹] были отождествлены 36 линий иона СІІІ, наблюдаемых в поглощении, большинство из которых (29 линий) образуется при возбуждении внутреннего 2s электрона до 2p состояния. Это переходы типа $2s3s^3S - 2p3s^3P^0$ с длинами волн 1426,45 - 1428,53 Å. При возбуждении внешнего электрона образуются линии типа $2s3p^4P_1^0 - 2s4d^4D_s$ с длиной волны 1531,85 Å.

Оценим вероятности спонтанных электрических дипольных переходов и силы осцилляторов наблюденных линий.

Рассмотрим следующие дипольные переходы:

2s3s35,-	$-2p3s^{3}P_{2}^{0}$	λ в А: 1426,45	$= 2s3d^3D_3$	$-2p3d^{3}F_{4}^{0}$	λвÅ: 1576,49
3S1-	- 3P0	1427,85	³ D ₂	- 3F ⁰ ₃	1577,32
3S1-	- 3P0	1428,53	THERE LET $^{3}D_{3}$	$- {}^{3}F_{3}^{0}$	1577,40
2s3p3P0-	$-2p3p^3P$	1427,93	5D1	$-3F_2^0$	1577,89
3P0	- ³ P ₂	. 1428,19	³ D ₂	$ {}^{3}F_{2}^{0}$	1577,94
3P0-	- ³ P,	1428,56	3D3	$-3F_{2}^{0}$	(2.) 1578,02
3P0-	- ³ P	1428,68	$2s3p^3P_2^0$	$-2p3p^{3}D_{3}$	1576,89
3P02-	$- 3P_{1}^{1}$	1428,94	3P0	$-3D_{2}$	1577,53
3P0-	$- {}^{3}P_{0}$	1429,11	3P02	$-3D_{2}$	1577,85
2s3d3D	$-2p3d^3D_0^0$	1477,61	3P00	$- ^{3}D_{1}$	1578,03
3D3-	- 3D°	1477,68	8 HON 800 3P0	$- {}^{3}D_{1}$	1578,17
³ D ₁ -	- ³ D ⁰ ₂	1478,00	³ P ₂ ⁰	$- {}^{3}D_{1}$	1578,48
${}^{3}D_{2}$ -	$-3D_{2}^{0}$	1478,05	2s3s 1S	$-2p3s^{1}P_{1}$	1591,45
³ D ₃ -	$-3D_{2}^{0}$	1478,12	2s3p3P0	$-2s4d^{3}D$	1620,05
${}^{3}D_{1} -$	$- {}^{3}D_{1}^{0}$	1478,30	3P0	— ³ D ³	1620,33
³ D ₂ -	$- {}^{3}D^{0}_{1}$	1478,35	3P0	- 3D,	1620,61
$2s3p^{1}P_{1}^{0}-$	$-2s4d^{1}D_{2}$	1531,85	3P0	$- {}^{3}D_{2}$	1620,67
OBT ON N	найлен		· 3P0	- 3D,	1620,76
			3P0	- 3D	1621,09

В этом списке приведены лабораторные длины всли [²], которые и были использованы в расчетах.

Вероятность спонтанного электрического дипольного перехода с уровня а'J' на уровень аJ определяется избестной формулой

$$A(a'J', aJ) = \frac{2,68 \cdot 10^9}{2J' + 1} i^3 S \ ce\kappa^{-1}.$$
 (1)

Здесь 2J' + 1 — статистический вес верхнего уровня; *i* — волновое число (в *ридбергах*) и

$$S = \sigma^2 S_{LL'} S / \sum S \tag{2}$$

— сила линии электрического дипольного перехода, причем $S_{LL'}$ — сила мультиплета, $s/\Sigma s$ — теоретическая интенсивность рассматриваемой линии по отношению ко всему мультиплету и

$$\sigma^2 = \frac{|\varrho_{nn'}|^2}{4l_*^2 - 1} \tag{3}$$

радиальная часть, где

A A ALLANDAN

$$\varrho_{nn'} = \int_{0}^{\infty} r P(nl|r) P(n'l'|r) dr$$
(4)

и *l*. — большее из двух азимутальных квантовых чисел электрона, участвующего в переходе.

Расчеты сил осцилляторов проводились при помощи формулы

$$f(\alpha J, \alpha' J') = \frac{i}{3} \frac{\sigma^2}{2J+1} S_{LL'} S_{JL} S_{JL'} S_{JL'}$$

где 2*J* + 1 — статистический вес нижнего уровня.

Во всех рассмотренных переходах имеется два неэквивалентных электрона вне остова, причем изучаются следующие два типа переходов: $l_1 l_2 - l_1 l_3$ и $l_1 l_2 - l_3 l_2$.

Значения относительных сил линий в дипольных мультиплетах $s/\Sigma s$ взяты из таблиц [³], а силы мультиплетов $S_{LL'}$ для указанных двух типов переходов определены по формулам [⁴] (см. гл. VI, § 36). В рассмотренных переходах оба уровня довольно хорошо описываются нормальной (LS) связью, что подтверждается приближенным выполнением правила интервалов ($\Delta E_{J,J+1} = \xi(L, S) (J+1)$).

Значения радиального фактора σ² определялись при помощи таблиц Бейтса и Дамгард [⁴] (см. приложение). В дальнейшем предполагается провести более точные расчеты радиальных интегралов.

Все величины, необходимые для расчета вероятностей дипольных переходов и сил осцилляторов иона СІІІ, и полученные результаты приведены в табл. 1.

Для вычисления эквивалентных ширин рассмотренных линий следует по формулам Больцмана и Саха оценить число атомов СШ над 1 см² фотосферы, находящихся на уровнях, при переходах с которых возникают интересующие нас линии.

Эффективное число атомов над 1 см² фотосферы ($\lg N = 23$) и электронное давление в $\partial u h \cdot cm^{-2}$ ($\lg P_e = 3,4$) для В0-звезд взяты из [³]. Для эффективной температуры принято значение 25000 °К. Степень ионизации и сумма по состояниям для СІІІ найдены по таблицам [⁵]. Результаты оценок числа атомов СІІІ над 1 см² фотосферы на различных уровнях приведены в табл. 2.

В случае тонкого слоя эквивалентная ширина слабой линии определяется формулой

~ 1		1					
Ταблица	W _A , MÀ	6	432 259 88	0.13 0.39 0.11 0.13 0.13 0.13 0.13	2,2 18,0 2,1 2,2 6,5 2,1	110	0.81 1.68 0.21 0.21 0.21 0.006
N D D D D D D D D D D D D D D D D D D D	$A_{\alpha'J', \alpha J, ce\kappa^{-1}}$	8	$5,79 \cdot 10^8$ $5,77 \cdot 10^8$ $5,85 \cdot 10^8$	$\begin{array}{c} 6.03 \cdot 10^{6} \\ 1.81 \cdot 10^{6} \\ 8.04 \cdot 10^{5} \\ 6.00 \cdot 10^{5} \\ 1.00 \cdot 10^{6} \\ 1.00 \cdot 2.40 \cdot 10^{6} \end{array}$	$\begin{array}{c} 1,16\cdot10^7\\9,26\cdot10^7\\1,56\cdot10^7\\7,22\cdot10^7\\1,62\cdot10^7\\7,78\cdot10^7\\7,78\cdot10^7\\2,59\cdot10^7\end{array}$	3,68 • 108	7,55 - 106 6,71 - 106 8,41 - 105 6,33 - 106 1,18 - 106 3,32 - 104
	fas, a's'		0,294 0,176 0,059	$\begin{array}{c} 0,306\cdot10^{-3}\\ 0,551\cdot10^{-3}\\ 0,736\cdot10^{-3}\\ 0,183\cdot10^{-3}\\ 0,184\cdot10^{-3}\\ 0,245\cdot10^{-3}\end{array}$	$\begin{array}{c} 0.53 \cdot 10^{-2} \\ 3.02 \cdot 10^{-2} \\ 0.85 \cdot 10^{-2} \\ 2.36 \cdot 10^{-2} \\ 0.38 \cdot 10^{-2} \\ 2.55 \cdot 10^{-2} \\ 2.55 \cdot 10^{-2} \\ 0.51 \cdot 10^{-2} \end{array}$	0,215	$\begin{array}{c} 0.361\cdot 10^{-2}\\ 0.350\cdot 10^{-2}\\ 0.031\cdot 10^{-2}\\ 0.393\cdot 10^{-2}\\ 0.044\cdot 10^{-2}\\ 0.009\cdot 10^{-2}\end{array}$
HERE P	02	9	0,828 0,828 0,839	3,46 • 10-3	1,655 • 10 ⁻¹	$10,86 \cdot 10^{-2}$	1,46 • 10 ⁻² 1,458 • 10 ⁻²
	s/Zs	5	5/9 1/3 1/9	3,75/27 11,25/27 1/9 2,25/27 3,75/27 1/9	3.9/75 31,1/75 3,75/75 17,4/75 3.9/75 3.9/75 3.9/75 3.75/75		45/105 31,1/105 3,9/105 21/105 3,9/105 0,11/105
	SLL	4	. 6	σ	15	30	21
	i	3	0,639 0,638 0,638	0,6380 0,6380 0,6379 0,6379 0,6377 0,6377	0,6167 0,6167 0,6165 0,6165 0,6165 0,6165 0,6164 0,6164	0,595	0.5780 0.5777 0.5777 0.5775 0.5775 0.5775
	<i>J_J'</i>	2	1-1 1-1 1-0	2-2 2-2 0-1 1-1 1-1 1-0		12	2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Переход		2s 3s 3S-2p 3s 3P ⁰	2s 3p sPº2p 3p sP	2s 3d 3D-2p 3d 3D°	3p 1P0-4d 1D	2s 3d ^a D—2p 3d ^a F ⁰

1 2 3	2 <i>p</i> 3 <i>p</i> ³ <i>D</i> 2–3 0,5779 1–2 0,5776 2–2 0,5775 0–1 0,5775 1–1 0,5775 2–1 0,5774	p 3s 1 Po 0,5726	${}^{3}D$ $2-3$ 0.5625 1-2 $0.56240-1$ $0.56240-1$ $0.56232-2$ $0.56231-1$ $0.56231-1$ $0.56221-1$ 0.5622
4 5	$\begin{array}{c} 21/45\\ 15\\ 11,25/45\\ 3,75/45\\ 1/9\\ 3,75/45\\ 0,25/45\end{array}$	3	$\begin{array}{c} 21/45\\11,25/45\\19\\3,75/45\\3,75/45\\0,25/45\end{array}$
6 7	0,231 0,0623 0,236 0,0568 0,236 0,0114 0,235 0,0118 0,235 0,0188	1,126 0,6447	$\begin{array}{ccccc} 0,210 & 0,331 \\ 0,297 & 0,297 \\ 0,395 & 0,395 \\ 0,011 & 0,059 & \\ 0,099 & 0,375 \cdot 10^{-2} \end{array}$
8	1,19 • 10 ⁸ 9,16 • 10 ⁷ 8,75 • 10 ⁷ 5,06 • 10 ⁷ 3,36 • 10 ⁷	5,67 · 10 ⁸	$\begin{array}{c} 6.01 \cdot 10^8 \\ 4.53 \cdot 10^8 \\ 3.35 \cdot 10^8 \\ 1.51 \cdot 10^8 \\ 2.52 \cdot 10^8 \\ 1.68 \cdot 10^8 \end{array}$
6	53,8 29,6 13,1 0,6	234	303 163 73 55 3,6

292

Т. Феклистова

(6)

$$W_{\lambda} = \frac{2J'+1}{2J+1} \frac{A\lambda^4}{8\pi c} N,$$

где A — вероятность перехода; N число атомов над 1 см2 фотосферы, участвующих в образовании линии; 2J'+1 и 2J+1 — статистические веса верхнего и нижнего состояний соответственно. Результаты расчетов эквивалентных ширин линий приведены в табл. 1.

Сравнивая возможные отождествления линий в наблюдаемом спектре б и л Скорпиона [1] с результатами расчета эквивалентных ширин

Уровень И ТИ	N, см-2
2s3s ³ S ₁	4,07 · 10 ¹³
2s3p3P0	1,18 · 10 ¹³
oregut of 3Ponellisteo	1,97 • 1013
and apolice strive	$3,94 \cdot 10^{12}$
$2s3d^3D_2$	1,09 · 1013
³ D ₃	1,53 · 1013
3D1	$6,55 \cdot 10^{12}$
$2s3p^{1}P_{1}^{0}$	$1,23 \cdot 10^{13}$
2s3s 1S0	8,10 · 10 ¹²

линий иона СШІ в интервале 1425—1620 Å, можно утверждать, что наблюдаемая линия с $\lambda = 1427,27$ Å (π Sco) и $\lambda = 1426,97$ Å (δ Sco) возникает при переходе $2s3s^3S - 2p3s^3P^0$, а не при переходе $2s3p^3P^0$ --2p3p3P, так как эквивалентная ширина в первом случае на три порядка больше, чем в последнем. Наблюдаемая линия с λ = 1577,77 Å (8 Sco) возникает при переходе 2s3p3P0-2p3p3D, так как эквивалентная ширина этой линии на два порядка больше, чем при переходе $2s3d^{3}D - 2p3d^{3}F^{0}$.

В исследованной области звезды с эффективной температурой 25000 °К прозрачность атмосферы, а, следовательно, и масса вещества над фотосферой, несколько больше, чем найденная по визуальной области спектра. Кроме того, с повышением температуры степень возбуждения СІІІ быстро растет, вследствие чего в излучении, проникающем сквозь атмосферу из подфотосферных слоев, рассмотренные нами линии уже имеются, что вносит значительный добавочный вклад в их эквивалентные ширины. Поэтому наши оценки дают нижнюю границу эквивалентных ширин. Более точные расчеты требуют учета строения атмосфер.

Следует отметить, что полученные нами результаты находятся в согласни с наблюдениями более горячих звезд (О9) Ориона [6]. Так, вычисленная суммарная эквивалентная ширина линий у $\lambda = 1428$ Å велика (Σ W_λ ≈ 780 мÅ) и около этой же длины волны наблюдалась широкая линия; совокупность линий у $\lambda = 1578$ Å ($\Sigma W_{\lambda} \approx 120$ мÅ) наблюдалась как слабая линия, а линия с $\lambda = 1591,5$ Å ($W_{\lambda} \approx 235$ мÅ) отмечена как сильная.

В заключение автор выражает благодарность А. Никитину и А. Сапару за ценные советы и замечания, сделанные в ходе работы.

ЛИТЕРАТУРА

- Morton D. C., Spitzer L., Astroph. J., 144, 1 (1966).
 Moore C. E., Atomic Energy Levels, National Bureau of Standards, Washington, 1949.
- Аллен К. У., Астрофизические величины, М., 1960.
 Левинсон И. Б., Никитин А. А., Руководство по теоретическому вычислению интенсивностей линий в атомных спектрах, Л., 1962.
- 5. Jager C. de, Neven L., Spectroscopic data for 50 model photospheres, Ann. Obs. Royal de Belgique, 8, Fasc. 1 (1957). 6. Morton D. C., Jenkins E. B., Bohlin R. C., Astroph. J., 154, 661 (1968).

Институт физики и астрономии Академии наук Эстонской ССР Поступила в редакцию 7/IX 1970

4 ENSV TA Toimetised F * M-3 1971

Таблица 2

T. FEKLISTOVA

C III JOONTE ARVUTUS B-TÄHTEDE SPEKTRI VAAKUUM-ULTRAVIOLETT-PIIRKONNAS

On leitud D. C. Mortoni ja L. Spitzeri poolt δ ja π Scorpii atmosfäärivälistel vaatlustel avastatud C III iooni spektrijoonte spontaansete elektriliste dipoolsete üleminekute tõenäosused ja ostsillaatorite tugevused spektri piirkonnas 1425–1620 Å ja hinnatud nende joonte ekvivalentlaiused B-tähtede spektris.

T. FEKLISTOVA

CALCULATION OF C III LINES FOR VACUUM ULTRAVIOLET REGION OF B-STARS

Probabilities of spontaneous electric dipole transitions and oscillator strengths of C III ions for wave-length region 1425–1620 Å are calculated for the lines established by D. C. Morton and L. Spitzer from rocket observations of δ and π Scorpii. The equivalent widths of these lines in the spectra of B-stars are estimated.

лентные ширины. Поэтому наши оценки дают нижнюю границу эквивалентных ширин. Более точные расчеты требуют учета строения ат-Следует отметить, что полученные нами результаты находятся в согласни с наблюдениями более горячих задад (ОЭ) Ориона [°]. Так, вычисленная суммариая эквивалентная ширина личий у $\lambda = 1428$ Å велика (2 № 2 780 мÅ) и около этой же длины волны наблюдалась цирокая линия; совокупность ликиц у $\lambda = 1578$ Å (2 № 2 235 мÅ) и аблюдалась как слябая длиния а линия с Х = 15945 Å (ए 2 25 мÅ)

В заключение автор инражает благодарность А. Никитину и А. Сапару за ценные советы и замечания, сделациые в ходе работы.