#### ЛИТЕРАТУРА

- Хайкович И. М., Уч. зап. ЛГУ, № 177, 194 (1954).
  Регаlta L. А., Raynor S., J. Acoust. Soc. America, 36, 476 (1964).
  Milenkovic V., Raynor S., J. Acoust. Soc. America, 39, 556 (1966).
  Алумяэ Н. А., В кн.: Тр. VI Всес. конфер. по теории оболочек и пластинок, М., 1966, с. 44. 5. Кутсер М. Э., Нигул У. К., ПММ, 33, 609 (1969).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 26/XII 1969

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 19. KÕIDE FCUSIKA \* MATEMAATIKA, 1970, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 19 ФИЗИКА \* МАТЕМАТИКА. 1970, № 3

https://doi.org/10.3176/phys.math.1970.3.17

В. АЛАДЬЕВ

## ОДНА ТЕОРЕМА ТЕОРИИ СОТООБРАЗНЫХ СТРУКТУР

V. ALADJEV. UKS TEOREEM KARJEKUJULISTE STRUKTUURIDE TEOORIAST

V. ALADYEV. A THEOREM ON THE THEORY OF CELLULAR STRUCTURES

Настоящая заметка посвящена вопросам существования в однородных структурах, составленных из автоматов Мура, неконструируемых (НКФ) и стираемых (СТКФ) конфигураций и является непосредственным продолжением работ [1,3]. Все используемые в заметке понятия, определения и обозначения соответствуют [1-4]. Основной результат выражает следующая

теорема.

1. Для того, чтобы структура ST (2, R, S, S<sub>0</sub>, L<sub>(1)</sub>) имела НКФ, достаточно выполнения одного из условий:

- a)  $(\exists p) (\mathfrak{L}_{(\mathbf{i})} : \mathfrak{S}_{\mathbf{m}^2}(i, j, T)) \mapsto (\mathfrak{S}(i, j, T + 1) = S_p \neq S_0) \longleftrightarrow (\mathfrak{S}(i, j, T) =$  $= S_p \& \mathfrak{S}(i + e, j + k, T) \neq S_p(e, k = \pm 1)));$
- 6)  $(\exists p) (\mathfrak{L}_{(1)} : \mathfrak{S}_{m^2}(i, j, T)) \rightarrow (\mathfrak{S}(i, j, T+1) = S_p \neq S_0) \longleftrightarrow (\mathfrak{S}(i, j, T) =$

$$= S_q \neq S_p \& \mathfrak{S}(i+1, j+1, T) = S_p));$$

B)  $\mathfrak{L}_{(1)}:\mathfrak{S}_{\mathrm{m}^2}(i,j,T) \to (\mathfrak{S}(i,j,T+1) = S_p \neq S_0) \longleftrightarrow (S_p \in \mathfrak{S}_{\mathrm{m}^2}(i,j,T));$ 

r)  $(\exists p) (\mathfrak{L}_{(1)} : \mathfrak{S}_{\mathfrak{m}^2}(i, j, T) \to (\mathfrak{S}(i, j, T+1) = S_p \neq S_0) \longleftrightarrow$ 

 $\longleftrightarrow (\mathfrak{S}(i+1, j+1, T) = S_a \& \mathfrak{S}(i-1, j-1, T) = S_p \neq S_q)).$ 

2. Структура может иметь НКФ или быть СТКФ-восприимчивой, не имея при этом СТКФ. \*

<sup>★</sup> B [1] Э. Мур доказал следующую важную теорему: если в структуре существуют СТКФ, то в ней существуют и НКФ. После сдачи настоящей заметки, в редак-цию автор познакомился с работой [<sup>5</sup>], в которой Дж. Майхилл доказал теорему, обратную теореме Мура [<sup>1</sup>]: если в структуре существуют НКФ, то в ней существуют и СТКФ. При этом понятие «конфигурации» у Майхилла отличается от муровского. Используя теорему нашей заметки, можно показать, что в смысле Мура теорема Майхилла [<sup>5</sup>] в общем случае неверна. Для этого, очевидно, достаточно построить такую

3. Число структур, не обладающих СТК $\Phi$ , не меньше величины  $(S!)^{s^s}/S$ .

Доказательство. 1. Для доказательства (а) необходимо показать, что в определенной таким образом структуре существуют НКФ.

Рассмотрим в момент T следующую  $K\Phi: \mathfrak{A}\{\mathfrak{S}(i, j, T) = \mathfrak{S}(i+1, j+1, T) = S_p\}$ . Оказывается, что невозможно найти такую КФ в момент T-1, из которой можно было бы получить  $K\Phi$   $\mathfrak{A}$  в момент T. Действительно, в противном случае  $\mathfrak{S}_{\mathfrak{m}^2}(i, j, T-1)$  и  $\mathfrak{S}\mathfrak{m}^2(i+1, j+1, T-1)$  должны содержать центральные автоматы в состоянии  $S_p$ . Но согласно функции  $\mathfrak{L}_{(1)}$  получаем, что в этом случае в момент T будет выполняться  $\mathfrak{S}(i, j, T) \neq \mathfrak{S}(i+1, j+1, T)$ , что противоречит виду  $K\Phi$   $\mathfrak{A}$ .

Методом индукции от  $T \ \kappa T - 1$  получаем, что КФ вида  $\mathfrak{A}$  могут в ST (2,  $\mathfrak{R}, S, S_0, \mathfrak{L}_{(1)}$ ) существовать только в момент T = 0. Согласно же определению НКФ [<sup>1</sup>] получаем, что КФ вида  $\mathfrak{A}$  и есть НКФ.

Пункты (б)—(г) доказываются аналогичным образом с подбором соответствующей НКФ.

Можно показать, что система условий типа (а)—(г) не является полной. Этим доказательство первой части теоремы закончено.

2. Рассмотрим частный случай функции  $\mathfrak{L}_{(1)}$ , определенной соотношениями вида 1 (а):

$$\forall p) (\mathfrak{L}_{(1)} : \mathfrak{S}_{\mathfrak{m}^2}(i, j, T) \to (\mathfrak{S}(i, j, T + 1) = S_p \neq S_0) \longleftrightarrow (\mathfrak{S}(i, j, T) = S_p \& \mathfrak{S}(i + e, j + k, T) \neq S_p (e, k = \pm 1))).$$

Легко заметить, что определенная таким- образом структура — полная [<sup>3</sup>].

Выберем взаимно стираемые КФ с блоками F и F\* размером в один автомат.

Имеются следующие возможности:  $(K\Phi(F) \& K\Phi(F^*) \neq S_0) \& \& K\Phi(F) \neq K\Phi(F^*); K\Phi(F) = S_0 \& K\Phi(F^*) \neq S_0$  и  $K\Phi(F) \neq S_0 \& K\Phi(F^*) = S_0.$ 

Рассмотрим первую возможность. Так как КФ на рис. 1 существуют



$$\begin{split} & \mathrm{K}\Phi(F,T) \neq \mathrm{K}\Phi(F^*,T) \\ & (\mathrm{K}\Phi(G,T) = \mathrm{K}\Phi(G',T) \& \\ & \&(\mathrm{K}\Phi(H,T) = \mathrm{K}\Phi(H',T)) \\ & \mathrm{Puc.} \ 1. \end{split}$$

в момент  $T \neq 0$ , то они не есть НКФ, т. е. КФ (G) и КФ (G') не содержат автоматов в тех же состояниях, что и автоматы F и F\*. Следовательно, в момент T + 1 автоматы F и F\* согласно  $\mathfrak{L}_{(1)}$  перейдут опять в стличные друг от друга состояния, что противоречит определению СТКФ [<sup>1</sup>].

Повторяя с очевидными изменениями данные рассуждения, получаем, что и в остальных случаях невозможно существование в

ST(2,  $\Re$ , S, S<sub>0</sub>,  $\Re_{(1)}$ ), в которой при отсутствии СТКФ в смысле Мура существовали бы НКФ. Второй пункт нашей теоремы дает ответ только для случая сграниченных ST(2,  $\Re$ , S, S<sub>0</sub>,  $\Re_{(1)}$ ). (Как любезно сообщил автору Дж. Майхилл [<sup>6</sup>], аналогичный результат получили также Аморозо и Коупер.) Более общий пример дает следующим образом заданная структура ST\*: множество состояний задается в виде S: {S<sub>0</sub> = 0, 1, ..., p}, а функция перехода  $\Re_{(1)}$  задается так, что

$$\mathfrak{L}_{(1)}:\mathfrak{S}_{\mathfrak{m}^2}(\iota,j,T)\to\mathfrak{S}(\iota,j,T+1)=p$$

тогда, когда в  $\mathfrak{Sm}^2(i, j, T)$  только  $\mathfrak{S}(i, j, T) = p$ , иначе  $\mathfrak{L}^{(1)}: \mathfrak{Sm}^2(i, j, T) \to \mathfrak{S}(i, j, T+1) = \oplus \Sigma \mathfrak{S}_{\langle i, j \rangle}(k, T) \pmod{p},$ 

(

ST (2,  $\Re$ , S, S<sub>0</sub>,  $\Re$ <sub>(1)</sub>) СТКФ с внутренним блоком размером в один автомат. Рассмотрим теперь СТКФ с внутренним блоком размера  $p \times p(p > 1)$ 

(см. рис. 1). Очевидно, что КФ (F, T) и КФ ( $F^*, T$ ) должны отличаться состояниями по крайней мере хоть одного соответствующего друг другу граничного автомата (СДДА) блоков F и  $F^*$  (A' и A''). Пусть в момент T автоматы A' и A'' находятся, соответственно, в состояниях S' и S''( $S' \neq S''$ ). Значит,  $S' \neq S_0 \vee S'' \neq S_0$ . В результате дальнейших рассуждений, повторяющих рассуждения в случае размера внутреннего блока p = 1, получаем, что в момент T + 1 с помощью вышеопределенной функции  $\mathfrak{L}_{(1)}$  невозможно получить даже условия КФ (F, T + 1) =  $= K\Phi (F^*, T + 1)$ , а это и доказывает отсутствие в ST ( $2, \mathfrak{R}, S, S_0, \mathfrak{L}_{(1)}$ ) СТКФ с внутренним блоком размера  $p \times p$  ( $p \ge 1$ ).

Выделим теперь в структуре две КФ следующего вида (см. рис. 2).

Рассмотрим во что перейдут с помощью функции  $\mathfrak{L}_{(1)}$  эти КФ в момент T + 1. Легко показать, что для этого все автоматы в состояниях S' и S'' необходимо заменить на автоматы в состоянии  $S_0$ , т. е. получаем, что КФ(F, T+1) = = КФ( $F^*$ , T+1) & КФ (G, T+1) =



 $K\Phi(H, T) = K\Phi(H', T)$ Рис. 2.

= КФ (G', T + 1). Таким образом, в ST ( $2, \Re, S, S_0, \Omega_{(1)}$ ) имеется возможность существования по крайней мере хоть одной пары взаимно стираемых КФ, но эти КФ, как мы доказали выше, являются НКФ, что и завершает вторую часть доказательства.

3. Предположим теперь, что в момент T в произвольной ST  $(2, \Re, S, S_0, \mathfrak{L}_{(1)})$  мы выделили пару блоков F и  $F^*$  размером  $p \times p$   $(p \ge 1)$  с окружающими их блоками G, G' и H, H' (см. рис. 1). Так как  $K\Phi(F,T) \neq K\Phi(F^*,T)$  и  $p \ge 1$ , то F и  $F^*$  должны отличаться состояниями по крайней мере хоть одного СДДА.

Рассмотрим произвольную  $\mathfrak{S}_{\mathfrak{m}^2}(i, j, T)$ . Будем придавать автомату в верхнем правом углу  $\mathfrak{S}_{\mathfrak{m}^2}(i, j, T)$  значения из множества S, оставляя остальные автоматы без изменения (неизмененные автоматы обозначим через  $\mathfrak{C}$ ). Получаем группу из S КФ указанного вида. Количество же групп такого типа, получающихся путем варьирования состояний автоматов в  $\mathfrak{C}$ , равно, очевидно,  $S^8$ . Внутри каждой из  $S^8$  групп КФ отличаются только состоянием автомата в верхнем правом углу  $\mathfrak{S}_{\mathfrak{m}^2}(i, j, T)$ , а между самими группами КФ отличаются или другими СДДА, или более чем одним автоматом.

Сравнительно легко показать, что для стсутствия СТКФ в ST  $(2, \Re, S, S_0, \Re_{(1)})$  достаточно задать функцию перехода  $\Re_{(1)}$  так, чтобы

где  $\widehat{\mathbb{G}}(i, j, T)$  — состояние автомата, находящегося в верхнем правом углу  $\mathbb{G}_{\mathbf{M}^2}(i, j, T)$ , а  $\mathbb{G}_{\langle i, j \rangle}(k, T)$  — состояние k-го  $(k = \overline{1,9})$  автомата из  $\mathbb{G}_{\mathbf{M}^2}(i, j, \overline{T})$ . Нетрудно убедиться, что заданная таким образом структура ST\* соответствует муровскому определению ST(2,  $\Re$ , S, S<sub>0</sub>,  $\Re_{(1)}$ ). Используя теперь нашу теорему, можно показать, что в ST\* существуют НКФ при отсутствии в ней СТКФ в смысле Мура. Наши выводы справедливы и для случая N-мерных ST(N,  $\Re$ , S, S<sub>0</sub>,  $\Re_{(1)}$ ). Более того, можно показать, что справедливь следующий к ор олларий. Число показать, ST(2,  $\Re$ , S, S<sub>0</sub>,  $\Re_{(1)}$ , обладающих НКФ и не обладающих СТКФ, не менге  $(s-2)[(s-1)!]^{sb-1} \times (s-1)^{sb-(s-1)^s}$ . КФ — НКФ  $(=) \mathfrak{M}[\mathfrak{L}_{(1)}^{-1}(K\Phi)] = 0$ . КФ<sub>0</sub> — - СКФ  $(=) (\forall T \in \mathfrak{T}^* \subset \mathfrak{T} = N \cup 0, \mathfrak{M}[\mathfrak{T}^*] = \infty), (\mathfrak{T}^{\mathbb{C}}_{(1)}(K\Phi_0))(K\Phi(\mathfrak{L}_{(1)}^{-1}(K\Phi_0)) = K\Phi_0).$ 

(Добавление при корректуре. - Ped.)

#### Краткие сообщения

все КФ каждой из построенных выше групп переводились в различные состояния  $\mathfrak{S}(i, j, T+1)$ . Это можно осуществить, так как число КФ в каждой из групп совпадает с мощностью множества S. В каждой группе число таких переводов, очевидно, равно (S!). В группе же, содержащей  $\mathfrak{S}_{\mathfrak{m}^2}^0(i, j, T)$ , число переводов будет равно (S-1)! А так как число самих групп равно S<sup>8</sup>, то как нетрудно показать, число функций перехода  $\mathfrak{L}_{(1)}$ , не порождающих структур ST (2,  $\mathfrak{R}$ , S, S<sub>0</sub>,  $\mathfrak{L}_{(1)}$ ) с CTKФ, не меньше величины (S!)<sup>s<sup>s</sup></sup>/S, что завершает третью часть доказательства, а этим и доказательство всей нашей теоремы.

Доказанная теорема показывает, что требование наличия в структуре СТКФ для существования в ней НКФ [1] не является необходимым, т. е. наличие в структуре СТКФ лишь достаточно для существования НКФ.

Теорема дает также некоторые достаточные условия существования НКФ в сотообразных структурах. Эти условия позволяют сравнительно легко получать и сам вид НКФ.

Доказательство теоремы ради простоты велось для двумерных структур, однако теорема с очевидными изменениями справедлива и в случае N-мерных сотообразных структур.

#### ЛИТЕРАТУРА

- Мооге Е., In: Proc. Sympos. Appl. Math. 14, N. Y., 1962.
  Аладьев В., Изв. АН ЭССР, Физ. Матем., 19, 159 (1970).
  Аладьев В., Изв. АН ЭССР, Биол., 19, 266 (1970)
  Клини С., Введение в метаматематику, М., 1957.
  Му hili J., Proc. Amer. Math. Soc., 14, № 4 (1963).
  Му hill J., In: Essays on Cellular Automata, 1970 (в печати).

Институт экспериментальной биологии Академии наук Эстонской ССР

Поступила в редакцию 29/XII 1969

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 19. KÖIDE FOUSIKA \* MATEMAATIKA, 1970, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 19 ФИЗИКА \* МАТЕМАТИКА. 1970, № 3

### РЭЭТ ПУКК

# АЛГОРИТМ ИНТЕГРИРОВАНИЯ, УЧИТЫВАЮЩИЙ СТЕПЕНЬ ГЛАДКОСТИ ФУНКЦИИ

REET PUKK. INTEGRANDI SILEDUST ARVESTAV INTEGREERIMISALGORITM REET PUKK. ALGORITHM OF INTEGRATION, TAKING INTO ACCOUNT THE DEGREE OF SMOOTHNESS OF THE INTEGRAND

Как известно [1-4], экономная тактика вычисления определенного интеграла с заданной (абсолютной или относительной) точностью от функций, имеющих нерегулярность (напр., разрывную производную или «почти особенность» типа 1:  $[10^{-10} + (x - x_0)^2])$  на отрезке интегрирования, состоит в следующем: около точек, вблизи которых функция «плохая», нужно интегрировать по малым отрезкам и с помощью квадратурных формул низкой точности. По мере удаления от таких точек следует увеличивать отрезки и повышать точность используемых фор-МУЛ.

Предлагаемый в данной заметке подход к построению алгоритмов интегрирования дает возможность определить степень гладкости подынтегральной функции на рассматриваемом промежутке отрезка интегри-