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В. TAMM

ON SOME ASPECTS IN SIMULATING ENGINEERING PROCESSES
BY MEANS OF PROBLEM ORIENTED PROGRAMMING SYSTEMS

The main difference between the general-purpose electronic computers
and the immense amount of machines created by human being is the
remarkable universality of the computers. They are able to solve complex
problems belonging to the most different fields of man’s activities. The
computing speeds of these machines as well as the speeds of switching'
from one problem to another exceed the corresponding abilities of man by
more than six orders of magnitude. Like most biological systems, computers
can be taught to carry out most different operations. Everything depends
on the “preliminary knowledge” we supply the machines with. This pre-
liminary knowledge of the computers is called computer software.

During the last ten years in our country a certain amount of investiga-
tions were started for carrying out mainly all-purpose programming sys-
tems, i. e. programming languages and corresponding translators. These
languages serve efficiently for describing evaluating procedures of nume-
rical analyses, linear and nonlinear programming, etc. In this case the
procedure oriented programming systems are irreplaceable in man-machine
systems. Several systems of such kind, based on well-known international
programming language ALGOL have been worked out in the Soviet
Union [t 2- 3].

But besides the problems of pure arithmetical or mathematical character
there is, however, a great amount of tasks the complexity of which is
determined by some special kind of decision making rather than by mathe-
matical algorithms. Most problems of civil engineering belong to this
ensemble.

Is it possible to program for a computer, for instance, the following
problems by means of procedure oriented programming systems? De-
signing of a multi-level traffic junction, controlling the cutter path of a
numerically controlled machine tool, optimal architectural planning for
complicated buildings of special purposes. The answer is “Yes, it is, but
only in principle.” In practice it turns out as an extremely cumbersome
and time-consuming task because of the unfittability of these languages
for describing all kinds of situations, logical conditions and engineering
objects. At the same time, these input languages are oriented on the pro-
fessional programmer who is able, after some study, to deal with the rather
complicated rules of their semantics and syntax. They don’t help an engi-
neer unskilled in both computing technique and the art of programming.
That is the reason why procedure oriented programming languages are
almost useless in the cases mentioned above.
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When solving an engineering problem it is necessary to define and
structure the problem, formulate the method of solution, perform calcu-
lations, obtain, evaluate and implement the results. An engineer must con-
tinually make decisions throughout the problem solution concerning tech-
nical aspects as well as economic and time limitations. Two engineers
given the same problem might obtain completely different yet satisfactory
problem solutions. In other cases, two engineers may obtain the same
solution of a problem, but by totally different methods.

Most of the engineering problems differ from each other and therefore
the writing up of a new program for each new problem is practically
impossible. Two different approaches were followed to find a way out of
this situation. The first approach could be termed as the decomposition and
reassembly approach. In this case an engineering problem was decomposed
for programming purposes, and reassembled for problem solution. Rather
than program entire problem solutions, small fundamental mathematical
and engineering calculations were programmed that could be solved with
the help of subroutine library programs. A complete problem solution
could be achieved then by running a series of these basic programs. How-
ever, this method did not work. The programs developed, did not properly
interface each other, there was too much card or tape handling involved in
the computer solution. The system never got properly integrated.

The followers of the second approach tried to develop large all-purpose
programs. But that did not succeed either. The input forms of these all-
purpose systems were rather complicated and the users refused to apply
them since in spite of the advertized universality there were many prob-
lems the programs could not handle. Taking still into consideration that
the computer programs are quite difficult to modify, it turned out that if
an engineer could not find a program to fit his problem, he modified the
problem to fit the program rather than vice versa.

It should be mentioned that the final solution of the entire problem is
far from perfection even today. At the same time, however, the basic prin-
ciples began to clear out, and during the last years a certain number of
successful implementations could have been followed in several countries
including the Soviet Union, the USA, Norway, etc.

As it was mentioned, the question lies in teaching the computer to solve
a great variety of different engineering problems. Therefore the engineer
must have an opportunity to communicate with the computer in much
the same way he communicates with another engineer using his normal
engineering terminology. He must have a language at his disposal which
enables him to build up language models of the problems to be solved. The
writing out and debugging of these models must be a matter of minutes
or hours instead of weeks or months, which often happens when using unfit-
ted computer software. On the other hand, the computer has to be supplied
with a processor for translating the language models into internal inter-
mediate languages to perform the necessary information processing. Later
-on the processor synthesizes the algorithm of the particular problem and,
by using the subroutines of its procedures in proper sequence, solves the
problem and produces the results obtained.

Jt turns out that problem oriented programming systems can serve as
very handy tools for engineers to communicate with a computer when solv-
ing their problems. These systems consist of programming languages ori-
ented towards the engineer and the corresponding processors. A general
block diagram describing the main steps towards solving a wide set of
engineering problems is presented in Fig. 1.
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Before an engineer starts to solve his problem, he has a certain amount
of initial information upon the problem at his disposal. This information,
usually unprepared for automatic processing, can be divided into two dif-
ferent sets. One of them comprises the data given as graphic documents
(drawings, blueprints, tables, lists, textual notes, etc.), and the other set
information in the memory of a computer (coded, as a rule, in an unsuit-
able way for automatic processing). The initial information, naturally,
may be presented in both ways simultaneously. Depending on these ways,
the preparation of initial data for automatic processing is carried out by
the use of two different sets of operators. In the case of graphical docu-
ments, the set consists of operations such as, for instance, checking of the
geometry of the drawing, designating its elements, sorting out the tables
and so on. These operators represent some exact prescriptions which are in
full accord with the programming language used further on. In case of
initial information stored in the memory of the computer, we have a
certain number of subroutines which turn this information into some code
suitable for compiling [ 4].

Now the programming language comes in. Designing the language
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model of the problem to be solved and writing out the language program
(which is the written copy of the language model) is a rather important
stage, as it involves the formulating of the problem to be solved. There
may be a great variety of language programs depending on the character
of the problems. Each language program is an algorithm written out in
the programming language, where the problem to be solved is formulated
unambiguously.

In the computer the language program is translated into machine code
through some intermediate internal languages. During the translation
process, a certain data processing is carried out to transform the infor-
mation (textual as well as numeric) into some fixed canonic forms. Thus
the language program controls the execution of calculations and together
with the processor it makes the large-scale computer act as a special pur-
pose computer for solving a particular problem. The instructions, written
in the language program make the processor appeal to corresponding pro-
cedures. These, in turn, use their subroutines to synthesize the correspond-
ing algorithms to solve the problem described by the engineer. The last
software block, the postprocessor transforms the data into some desired
output form.

The actual success of a problem oriented programming system depends
highly on its language because the language is the tool for simulating the
class of problems the system is designed for. The language must be ori-
ented towards the engineer, i. e. he must have the chance to use profession-
al terminology and communicate with the computer in much the same
way as he communicates with another engineer of his profession. An
engineer describes his problem by specifying the engineering operations
thatrjmust be performed, and he does not refer directly to the procedures
associated with the operation. Thus, when specifying the fragment of tra-
jectory (shown in Fig. 2) of an object moving along the circular arcs 5
and 6, passing over from one arc to another at the intersection point having
greater abscissa (with regard to the other possible intersection point), the
engineer is not asked to think about what kind of equations there must be
solved in order to calculate the coordinates of the intersection point, from
where to pick up the numerical data for solving equations, how to fix the
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correct route, etc. (SAP-2) * [s], He simply writes some macrostatements,
two alternative variants of which (concerning the fragment of the trajec-
tory) are given in the figure above.

Problem oriented languages are command structured, where each com-
mand represents an operation or group of operations the computer is to
perform using the subroutines of the system processor. The commands are
usually technical terms which have a meaning to an engineer, such as
ALONG THE CIRCULAR ARC or BEGIN FROM SEGMENT 14. Each
command may also contain data relevant to the requested operation.

The following command (APROKS)** [ 4 ’ 6].

TO PIECE К 10, POINT (SEC 3/SEG 4) [PEN ; ON]

means that the cutter of the numerically controlled flame cutter is to
approach piece No. 10 in the nesting plate and actually reach the point of
the piece specified as an intersection between segments No. 3 and 4. At
this point the cutter must penetrate the metal.

As it follows even from these brief examples, the commands of problem
oriented languages are really engineering macros, each of which calls for
some group of processor procedures. These procedures, in turn, utilize a
certain number of subroutines.

Problem oriented computer languages have several remarkable quali-
ties facilitating the job of the engineer, the user. One of them is the pos-
sibility of specifying most of the engineering operations in several dif-
ferent ways. It depends on the task and experience of the engineer which'
of the possible variants he chooses. For instance, instead of describing the
fragment of trajectory given in Fig. 2 in the first way, the engineer, after
designating the intersection point, may use the second alternative for speci-
fying the part shown in the figure.

Owing to the permissible diversity in forms and types of presenting
information in language model, the commands are tree-structured. Thus,
for instance, in COCO (Coordinated GeOmetry), worked out by the Mas-
sachusetts Institute of Technology, a straight line may be described by
means of six different forms (using different types of geometrical objects)
[ 7j. In SAP-II a straight line has eleven different forms of representation,
and the corresponding command has a structure shown in Fig. 3. In this

tree each branch stands for
one of the possible forms of
describing a straight line,
whereas each link of the
branch depicts the element of
information. The same figure
may serve for showing one
more order of liberty which
is at the disposal of the user
of the language. When writ-
ing the commands of lan-
guage program, in many ca-
ses he is not asked to write

Fig. 3.

* System of Automatic Programming for numerically controlled machine tools.
Institute of Cybernetics, 1964.

** Automatic programming for machining of ship hulls. Institute of Cybernetics.
1967.
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the elements of commands in any
strict sequence a demand that
must always be taken into conside-
ration when filling out standard for-
mats, tables or technological cards
for programming. So, all the under-
lined elements in Fig. 3 may change
their locations in the form in which
they are used.

Examples; (see Figs 3 and 4) Fig. 4.

STR LINE 10/ = /MORE Y SIR LINE 15/ R 15/
or

SIR LINE 10/=-/R 15/MORE Y STR LINE 15/

SIR LINE 6/ = /РТ 7/ YX К5/
or

STR LINE 6/ ■= YX К5/РТ7/
The possible usage of different types of information (in our case dif-

ferent geometrical objects) for describing one and the same idea may be
illustrated by equal-in-pairs commands, taken from three different problem
oriented systems:

INTERSECTION 10 ARC 5 LINE 10 NEAR 20 |
COCO

INTERSECTION 10 ARC 5 LINE FROM 2 TO 8 NEAR 20 ]

COMMON (PIECE К5, SG (РТ 6/PT 7) PIECE КB, 4
SG (РТ 4/PT 5)) I aprokS

COMMON (PIECE К 5, SG 8 -> PIECE К 8, SG 14) J
CIRCLE 01/ /MORE X STR LINE 01/MORE Y+ ]

-t- CIRCLE 03/R 01/
\ SAP-II

CIRCLE 01/ = /MORE Y STR LINE 01/LESS X +

+ CIRCLE 03/R 01/ J
In the first pair of commands, the same intersection of geometrical

elements is specified by two different forms; in the second pair, two iden-
tical versions for one and the same common cut operator are written; the
third pair consists of two alternatives for specifying one and the same
circle. These brief examples, of course, do not throw light on the entire
flexibility of the languages mentioned.

Due to the properties mentioned and similar to them, the engineer is
not subordinated to the language. On the contrary, he has a lot of freedom
in specifying the language model of his problem, so that the result of it
really depends on his creativeness, on his engineering qualification.

Let us assume now that we have a more or less sufficient number of
engineering programming systems at our disposal. Are we allowed to
hope that at this stage the problem of simulating engineering processes
will be principally solved? Certainly not. At this stage we can imagine
that we should be in a position of a great engineering organization divided
into departments, each of which is able to solve its own problems rather
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effectively, though confronted with great difficulties when solving a com-
plicated problem where highly coordinated and simultaneous actions of
different departments are needed. For these purposes the most essential,
or at least one of the possible ways, is to create a large integrated system
of different problem oriented languages having a large common processor
which is able to execute a separate problem concerned with one of the input
languages as well as a problem where numerous interconnections between
different subsystems are needed. But in order to accomplish this idea,
several problems" must be solved beforehand.

Firstly, the processors of the corresponding problem oriented languages
existing in our country up to this day are written in machine codes. That is
a tremendous and time-consuming task, and the carrying out of these pro-
cessors in the future by the same way is almost unreal, particulary taking
into consideration the diminishing operating times of any particular type
of computer.

Secondly, there are no large-scale procedure oriented languages and
translators as yet, allowing to satisfy all the necessary conditions for
describing the processor of such an integrated system (adapted for our
computers). Unfortunately the existing ALGOL subsets could not be used
for these purposes because of their poor capabilities in describing logical
situations and in data processing.

And, of course, the problem of appropriate and reliable periphery equip-
ment for computers isn’t trivial either.

The internal structure of such a system might be assumed to be simi-
lar to the internal structure of a civil engineering organization. We can,
in general, think of three levels of hierarchy. In contrast to the structure
of such kind of integrated system and a civil engineering organization, the
similarities are observed between the system and the entire organization
(at a higher level of hierarchy), the subsystems and the divisions of orga-
nization (the second level), and the subsystem procedures and the groups
of the division (the lower level). The principle block diagram of the system
is presented in Fig. 5.

First of all this system must have a powerful and efficient engineering
programming language for writing the subsystem programs. This lan-
guage should be addressed to highly skilled system programmers to create
and program new subsystems or to enlarge and alter the existing ones.
In other words, one of its functions is to enable the programming of the
system processor. Let us call it System Language. This language, cer-
tainly, must be a procedure oriented language as it must provide for a
handy programming of a large set of procedures allocated in the system
processor. Probably some extension of some existing problem oriented lan-
guage will serve as System Language. That is why a system precompiler
(for translating the system statements concerning the extension of a pro-
cedure oriented language into its legitimate statements) is needed. It is
obvious that all the problem oriented subsystems comprised in the inte-
grated system must have their individual precompilers in order to translate
the language models of problems written in the corresponding source lan-
guage into statements of the system compiler language.

The system compiler language is responsible for accomplishing three
main functions:

1) It must recompile the System Language statements mainly
concerned with altering and expanding already existing subsystems, or
adding new ones, into machine code or some other lower level language in
which the processor procedures are stored.
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2) At the same time, the system compiler has to retranslate the
language program statements of different problem oriented subsystems
into the code or set of codes in which the ensemble of processor
subroutines will act.

3) The third is the control function. If it is necessary to use several
different subsystems for solving a complex task, the proper linkage of
these subsystems as well as the mutual exchange of intermediate
information must be controlled at the level of the system compiler
language.

The executive part of system processor when solving a problem is the
part where the programs of the procedures are situated. This part has some
kind of matrix structure where the columns represent different subsystems
and the rows represent different classes of subroutines. Apparently there
are at least two classes of subroutines: one of them comprises the
program used by several subsystems let us refer to them as general
subroutines, the other comprises programs used by only one subsystem
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let us call them specific subroutines. The same idea about the system
processor structure as well as about the command definition language
is formulated in the ICES project [ B],

The command definition language can be considered as a problem
oriented language to generate new subsystem commands or even entirely
new problem oriented languages. This language, together with its
processor, enables, for instance, to specify to which subsystem a new
command must be added (or altered), the structure of the command, the
type of operation, the data items associated with the command, the
required processing in the processor, the possible branches in the command
tree structure, etc. The problems concerning the design and application
of the command definition language would certainly be a subject of
special discussion.
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B. TAMM

INSENERLIKE PROTSESSIDE MODELLEERIMISE ASPEKTIDEST
PROBLEEMORIENTATSIOONIGA PROGRAMMEERIMISSÜSTEEMIDE ABIL

Laialt levinud protseduurorientatsiooniga programmeerimissüsteemid elektronarvuti-
tele osutuvad .vähe efektiivseks, kui on tegemist loogiliste situatsioonide ja insenerlike
objektide kirjeldamisega. Lisaks sellele on nende keel ning semantilised ja süntaktilised
reeglid liiga keerukad programmeerimistehnikas kvalifitseerimata kasutajale. Laia klassi
insenerlike ülesannete lahendamiseks on väga sobivad probleemorientatsiooniga program-
meerimissüsteemid, mida viimasel ajal on hakatud välja töötama NSV Liidus, Ameerika
Ühendriikides, Norras ja mujal. Artiklis antakse lühike insenerlike protsesside_ iseloomus-
tus informatsioonilisest seisukohast, formuleeritakse nende modelleerimise põhimõtteline
algoritm, kasutades vastavaid keeli, ning näidatakse nende keelte mitmeid põhimõttelisi
eeliseid, võrreldes arvutite muud laadi matemaatilise varustusega. Tuuakse näiteid olemas-
olevatest süsteemidest. Esitatakse suure integreeritud programmeerimissüsteemi põhimõt-
teline skeem ja selgitatakse selle tähtsamaid funktsioone.

Б. TAMM

НЕКОТОРЫЕ АСПЕКТЫ МОДЕЛИРОВАНИЯ ИНЖЕНЕРНЫХ ПРОЦЕССОВ
С ПОМОЩЬЮ СИСТЕМ ПРОЕРАММИРОВАНИЯ

С ПРОБЛЕМНОЙ ОРИЕНТАЦИЕЙ

Общеизвестные системы программирования с процедурной ориентацией для цифро-
вых вычислительных машин оказываются неэффективными при необходимости описа-
ния логических ситуаций и инженерных объектов. Кроме того, их язык, семантические
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и синтаксические правила слишком сложные для потребителя, не квалифицированного
в технике программирования. Очень подходят для решения широкого класса инженер-
ных задач системы с проблемной ориентацией, к созданию которых приступили в Совет-
ском Союзе, США, Норвегии и т. д. В статье дается краткая характеристика инженер-
ных процессов с информационной точки зрения, формулируется алгоритм их решения с
использованием соответствующих языков и показывается ряд преимуществ таких языков
но сравнению с математической обеспеченностью ЦВМ другого характера. Приводятся
примеры из существующих систем. Предлагается принципиальная схема большой интег-
рированной системы программирования и указываются некоторые ее функции.

2 ENSV ТА Toimetised F * М-3 1968
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