EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVI KÕIDE FOOSIKA * MATEMAATIKA. 1967, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVI ФИЗИКА * МАТЕМАТИКА. 1967, № 3

https://doi.org/10.3176/phys.math.1967.3.03

Э. РАИК

МЕТОДЫ ФЕЙЕРОВСКОГО ТИПА В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

1. Нахождение общей точки выпуклых множеств

Пусть в гильбертовом пространстве H даны выпуклые замкнутые множества Q_1, Q_2, \ldots, Q_m такие, что пересечение $Q = \bigcap_{i=1}^m Q_i \neq \emptyset$, тогда для нахождения некоторой точки пересечения Q можно поступить следующим образом.

Задаемся начальным приближением x⁰ и строим последовательность xⁿ по рекуррентной формуле

$$x^{n+1} = x^n + \lambda_n (P_k x^n - x^n), \tag{1.1}$$

где $P_k x^n$ — проекция точки x^n на множество Q_k , а $k = n \pmod{m} + 1$

$$0 < \alpha \leqslant \lambda_n \leqslant \beta < 2.$$

Тогда для любых $x \in Q$ выполняется неравенство $||x - x^{n+1}|| \leq ||x - x^n||$, т. е. последовательность (1.1) является фейеровской относительно множества Q.

В конечномерном пространстве последовательность (1.1) сходится к некоторой точке пересечения $x^* \in Q$ [¹]. В бесконечномерном случае для доказательства сходимости x^n требуются дополнительные предположения, например $Q_1 \bigcap_{i=2}^m Q_i^0 \neq \emptyset$ [²] (Q_i^0 означает внутренние точки множества Q_i). Это дополнительное требование можно заменить более общим, а именно — потребовать, чтобы множества Q_i (i = 1, 2, ..., m) образовывали корректную систему множеств в том смысле, что из $Q(x^n, Q_i) \rightarrow 0$ (i = 1, 2, ..., m) следует $Q(x^n, Q) \rightarrow 0$ (см. приложение).

Для случая, если множества Q_i (i = 1, 2, ..., m) задаются неравенствами $g_i(x) \leq 0$ (i = 1, 2, ..., m), где $g_i(x)$ — дифференцируемые и выпуклые функционалы, И. Ереминым предложен другой метод построения фейеровской последовательности [5].

Согласно этому методу последовательность xⁿ определяется как

$$x^{n+1} = x^n - \frac{g_k(x^n)_+}{\|g'_k(x^n)\|^2} g'_k(x^n), \qquad (1.2)$$

$$k = n \pmod{m} + 1$$

 $g_k(x^n)_+ = \max(0, g_k(x^n))$

где

или

$$x^{n+1} = x^n - \frac{g(x^n)}{\|g'(x^n)\|^2} g'(x^n),$$
 где $g(x) = \sum_{i=1}^m g_i(x)_+.$ (1.2')

Для решения системы линейных равенств аналогичный метод был предложен еще У. Хартом и Т. Моцкиным [4].

В конечномерном пространстве последовательность (1.2) сходится [^{3, 4}]. Для доказательства сходимости в общем случае требуется дополнительное определение. Назовем ограничение $g(x) \leq 0$, задающее множество $Q = \{x : g(x) \leq 0\}$, корректным, если из того, что $g(x^n) \rightarrow +0$, следует $\varrho(x^n, Q) \rightarrow 0$ (см. приложение и [⁵]).

Теорема 1. Если в любой ограниченной области

- 1) $g_i(x)$ выпуклы и дифференцируемы,
 - 2) $g_i(x) \leq 0$ как ограничения корректны,
- 3) система множеств Q_i корректная,
- 4) $||g'_i(x)|| =$ ограничены (i = 1, 2, ..., m),

то последовательность (1.2) сходится к $x^* \in Q = \bigcap Q_i$.

Доказательство. Заметим, что множества Q_i (i = 1, 2, ..., m). выпуклы и замкнуты как множества, заданные выпуклыми и непрерывными функционалами $g_i(x)$. Тогда и множество $Q = \bigcap_{i=1}^{m} Q_i$ выпукло и замкнуто.

В силу выпуклости функции $g_k(x)$ имеем при $x^n \in Q_k$ для любого $x \in Q_k$, а следовательно, и $x \in Q$

$$(x-x^n, g'_k(x^n)) \leqslant g_k(x) - g_k(x^n) \leqslant -g_k(x^n) < 0,$$

а также (х — х

$$(x - x^{n+1}, g'_{k}(x^{n})) = \left(x - x^{n} + \frac{g_{k}(x^{n})_{+}}{\|g'_{k}(x^{n})\|^{2}}g'_{k}(x^{n}), g'_{k}(x^{n})\right)$$
$$(x - x^{n}, g'_{k}(x^{n})) + g_{k}(x^{n})_{+} \leq -g_{k}(x^{n}) + g_{k}(x^{n})_{+} = 0$$

Имеем

$$(x - x^{n+1}, x^{n+1} - x^n) = -\frac{g_k(x^n)_+}{\|g'_k(x^n)\|^2} (x - x^{n+1}, g'_k(x^n)) \ge 0.$$
(1.3)

Согласно свойствам скалярного произведения для любого x є Q

$$||x - x^n||^2 = ||x - x^{n+1}||^2 + ||x^{n+1} - x^n||^2 + 2(x - x^{n+1}, x^{n+1} - x^n)$$

откуда по (1.3) следует $||x - x^{n+1}|| \leq ||x - x^n||$, т. е. фейеровость относительно множества Q. Из фейеровости последовательности (1.2) следует ее ограниченность.

Выбрав в качестве x проекцию точки x^n на множество Q и обозначив ее через Px^n , получим

$$[\varrho(x^{n+1}, Q)]^{2} = ||Px^{n+1} - x^{n+1}||^{2} \le ||Px^{n} - x^{n}||^{2} - ||x^{n} - x^{n+1}||^{2} = = [\varrho(x^{n}, Q)]^{2} - ||x^{n} - x^{n+1}||^{2}.$$
(1.4)

Расстояния $\varrho(x^n, Q)$ образуют монотонно невозрастающую ограниченную снизу последовательность, которая, следовательно, сходится: $\varrho(x^n, Q) \rightarrow \varrho \ge 0$. А в таком случае из (1.4) получаем, что $||x^n - x^{n+1}|| \rightarrow 0$. Но

$$\|x^{n+1} - x^n\| = \|\frac{g_k(x^n)_+}{\|g'_k(x^n)\|^2} g'_k(x^n)\| = \frac{g_k(x^n)_+}{\|g'_k(x^n)\|} \ge \frac{g_k(x^n)_+}{c}, \qquad (1.5)$$

где $c = \sup_{x \in R} \|g'_k(x)\|, R = \{x : \|Px^0 - x\| \le \|Px^0 - x^0\|\},$ а x^0 — начальное приближение.

Из неравенства (1.5) получаем $g_k(x^n)_+ \to 0$; но тогда в силу корректности ограничения $\varrho(x^n, Q_k) \to 0$ для любого множества Q_k . Система множеств Q_i (i = 1, 2, ..., m) является корректной, следовательно, и $\varrho(x^n, Q) \to 0$.

Докажем теперь, что фейеровская последовательность x^n относительно множества Q с дополнительным условием $\varrho(x^n, Q) \to 0$ сходится к $x^* \in Q$.

Зафиксируем $\varepsilon > 0$ и выберем N_0 такое, что для любого $n \ge N_0$ $||x^n - Px^{N_0}|| \le \varepsilon$; для $\frac{\varepsilon}{2}$ выберем N_1 такое, что для любого $n \ge N_1$ $||x^n - Px^{N_1}|| \le \frac{\varepsilon}{2}$; аналогично для $\frac{\varepsilon}{4}$ и т. д.

Обозначив множество $S_0 = \{x : \|x - Px^{N_0}\| \leq \varepsilon\}, S_1 = \{x : \|x - Px^{N_1}\| \leq \frac{\varepsilon}{2}\}$, получим, что $F_1 = S_0 \cap S_1 \neq \emptyset$. Множество F_1 содержит по крайней мере все члены последовательности, начиная с x^{N_1} , и точку Px^{N_1} . Продолжая процесс, получаем последовательность вложенных друг в друга замкнутых множеств $F_k \supset F_{k+1}$

$$F_k = \bigcap_{i=0}^{\kappa} S_i \subset S_k,$$

где раднус замкнутого шара S_k равен $\frac{\varepsilon}{2^k}$ и стремится к нулю, а каждое множество F_k содержит точку Px^{Nk} и точки последовательности x^n , начиная с x^{Nk} . В силу полноты пространства H $x^* = \bigcap_{i=1}^{\infty} F_i$, а $x^n \to x^*$, но тогда и $Px^{Nk} \to x^{**}$; $x^* = x^{**} \in Q$, так как $||x^n - Px^n|| \to 0$, что и требовалось доказать.

Замечание 1. Метод Еремина, описанные ниже метод Еремина—Мазурова и теорема 2 обобщаются и для недифференцируемых непрерывных функционалов. При этом все доказательства и рассуждения переносятся дословно. Только под $g'_k(x^n)$ следует понимать любой опорный функционал к функционалу $g_k(x)$ в точке x^n .

Замечание 2. Теорема 1 справедлива и для последовательности, определяемой по формуле (1.2'), а также и для последовательности

$$x^{n+1} = x^n - \lambda_n \frac{g_k(x^n)_+}{\|g'_{k,k}(x^n)\|^2} g'_k(x^n),$$

где $0 < \alpha \leq \lambda_n \leq \beta < 2$.

Если множества, на которые мы умеем проектировать, составляют только часть их общего числа, то последовательность x^n следует строить, применяя как формулу (1.1), так и формулу (1.2).

2. Решение экстремальных задач

Рассмотрим сначала задачу для нахождения безусловного экстремума.

В гильбертовом пространстве H дан выпуклый и дифференцируемый функционал f(x), достигающий своего минимума f^* . Определим минимизирующую последовательность

$$x^{n+1} = x^n - \frac{f(x^n) - f^*}{\|f'(x^n)\|^2} f'(x^n).$$
(2.1)

Если функционал $f(x) - f^*$ рассматривать как ограничение, задающее множество $Q = \{x : f(x) - f^* \leq 0\}$, то верна

Теорема 2. Если в любой ограниченной области ограничение $f(x) - f^* \leq 0$ корректно, а $||f'(x)|| < c < \infty$, то последовательность (2.1) сходится к $x^* \in Q$.

Доказательство. Справедливость этого утверждения следует из теоремы 1, если число множеств *m* принять равным единице.

Замечание З. В конечномерном пространстве R^n для любой выпуклой дифференцируемой функции, определенной во всем пространстве и достигающей своего минимума, условия теоремы 2 всегда выполнены. Следовательно, последовательность. (2.1) в R^n сходится.

Теорема 2 представляет интерес, потому что не любая минимизирующая последовательность для данной задачи сходится, и именно для подобных задач были предложены методы регуляризации.

Непрерывный вариант метода (2.1) предложен в работе [6].

Перейдем к рассмотрению экстремальной задачи на условный минимум. Требуется найти минимум выпуклого дифференцируемого функинонала f(x) на пересечении выпуклых замкнутых множеств $Q = \bigcap_{i=1}^{m} Q_i$, $Q_i = \{x : g_i(x) \leq 0\}$. Если функционал f(x) достигает своего минимума f^* на множестве Q и нам известно минимальное значение f^* , то эта задача сводится к задаче предыдущего параграфа. Будем искать некоторую общую точку выпуклых замкнутых множеств Q_i (i=0, 1, 2, ..., m), где множество $Q_0 = \{x : f(x) \leq f^*\}$. Пересечение этих множеств $M = \bigcap_{i=0}^{m} Q_i$ состоит из точек минимума, т. е. для любого $x \in M$ $f(x) = f^*$.

Для случая, когда значение j^* не известно, И. Ереминым и В. Мазуровым был предложен следующий метод [7]. Рассмотрим функционал $g(x) = \max_{i} g_i(x)$, который задает множество $Q = \{x : g(x) \leq 0\}$. Если выполнены условия теоремы 1, то из $g(x^n) \to 0$ следует $\varrho(x^n, Q) \to 0$.

По методу Еремина—Мазурова при произвольном начальном приближении x^0 строят фейеровскую последовательность [для определенности по формуле (1.2)] относительно множества Q. При этом из некоторых точек последовательности x^{n_j} совершают шаг по антиградиентуфункционала f(x)

$$x^{n_j+1} = x^{n_j} - \lambda_j \frac{f'(x^{n_j})}{\|f'(x^{n_j})\|},$$
(2.2)

где n_i — натуральное число, выбираемое тем или иным способом для каждого *j*. Здесь n_i определяется из условия $g(x^{n_j}) < \lambda_i, 0 < \lambda_i \leq \lambda_0,$ $\lambda_j \rightarrow 0, \sum_{j=0}^{\infty} \lambda_j = \infty$. Если выполнены условия теоремы 1, то такое число n_i существует.

В работе [7] доказано, что для последовательности (1.2), (2.2) в конечномерном пространстве для линейной функции f(x) расстояние $\varrho(x^n, M) \to 0$, где $M = \{x : f(x) = f^*, x \in Q\}$.

Исследуем метод в более общем случае.

Теорема 3. Пусть выпуклый и дифференцируемый функционал f(x) достигает своего минимума f^* на пересечении выпуклых множеств $Q = \prod_{i=1}^{m} Q_i$. Если $g_i(x)$ выпуклы и дифференцируемы, ограничения $g_i(x) \leq 0$ корректны, система множеств Q_i корректна, $||g'_i(x)||$ ограничены $(i = 1, 2, ..., m), \lambda_i \to 0, \lambda_i > 0$ и $\sum_{i=0}^{\infty} \lambda_i = \infty$, то $\varrho(x^n, Q) \to 0$ и существует такая подпоследовательность x^{n_s} , что $f(x^{n_s}) \to f^*$.

Доказательство. Выполнены условия теоремы 1 и, следовательно, для λ_i существует n_i такое, что $g(x^{n_j}) = \max_i g_i(x^{n_j}) \leqslant \lambda_i$. В силу корректности ограничений и корректности систем множеств $\varrho(x^{n_j}, Q) \to 0$. Заметим, что для элементов последовательности x^n , определяемых из (1.2), $\varrho(x^{n+1}, Q) \leqslant \varrho(x^n, Q)$, а для элементов, определяемых из (2.2), $\varrho(x^{n_j+1}, Q) \leqslant \varrho(x^{n_j}, Q) + \lambda_j$. Из того, что $\lambda_j \to 0$ и $\varrho(x^{n_j}, Q) \to 0$, следует, что $\varrho(x^n, Q) \to 0$.

Покажем, что $\lim_{n\to\infty} f(x^n) \ge f^*$. Рассмотрим некоторую точку минимума $\overline{x} \in M$. Тогда в силу выпуклости f(x) и выпуклости Q

$$f(x^{n}) \ge f^{*} + (f'(\bar{x}), x^{n} - \bar{x}) \ge f^{*} - \|f'(x^{n})\|_{Q}(x^{n}, Q),$$

т. е. в пределе

$$\lim_{n \to \infty} f(x^n) \ge f^*. \tag{2.3}$$

Осталось доказать, что найдется подпоследовательность x^{n_s} , для которой $\lim_{s\to\infty} f(x^{n_s}) \ll f^*$. Допустим, что существует $\varepsilon > 0$ такое, что $f(x^n) \ge f^* + \varepsilon$ для любого $n \ge N_{\varepsilon}$. В силу непрерывности f(x) можно указать $\delta > 0$ такое, что $f(x) \ll f^* + \varepsilon$ для тех x, для которых $||x - \overline{x}|| \ll \delta$. Для точек, определяемых из (1.2),

$$\|x^{n+1} - \overline{x}\|^2 \leq \|x^n - \overline{x}\|^2,$$
 (2.4)

а для точек, определяемых из (2.2),

$$\begin{aligned} \|x^{n+1} - \overline{x}\|^2 &= \|x^{n+1} - x^n + x^n - \overline{x}\|^2 = \\ &= \|x^n - \overline{x}\|^2 + \|x^{n+1} - x^n\|^2 + 2(x^{n+1} - x^n, x^n - \overline{x}) \\ (x^{n+1} - x^n, x^n - \overline{x}) &= -\left(x^{n+1} - x^n, \overline{x} - x^n - \delta \frac{x^{n+1} - x^n}{\|x^{n+1} - x^n\|}\right) - \\ &- \left(x^{n+1} - x^n, \delta \frac{x^{n+1} - x^n}{\|x^{n+1} - x^n\|}\right) \leqslant -\delta \|x^{n+1} - x^n\|.\end{aligned}$$

В итоге, помня, что по (2.2) $||x^{n_j+1} - x^{n_j}|| = \lambda_i$, имеем

$$\|x^{n_{j}+1} - \overline{x}\|^{2} \leq \|x^{n_{j}} - \overline{x}\|^{2} + \lambda_{j'}^{2} - 2\delta\lambda_{j}.$$
(2.5)

Выбирая N так, что $\lambda_i \leq \delta$ для $n_i \geq N$, и складывая соответственно неравенства (2.4) и (2.5), получим

$$0 \leq \|x^{n_m} - \overline{x}\|^2 \leq \|x^{n_l} - \overline{x}\|^2 + \sum_{j=l}^m \lambda_j (\lambda_j - 2\delta) \leq \|x^{n_l} - \overline{x}\|^2 - \delta \sum_{j=l}^m \lambda_j.$$

Это неравенство должно быть удовлетворено для любого *m*. Но это противоречит тому, что ряд $\sum \lambda_i$ расходится. Учитывая неравенство (2.3), получаем, что существует такая подпоследовательность x^{n_s} , что $\lim_{s\to\infty} f(x^{n_s}) = f^*$. Утверждать сходимость $\varrho(x^n, M) \to 0$, как это сделано в работе [7], в данном случае, вообще говоря, нельзя.

Выясним этот вопрос подробнее.

Рассмотрим задачу минимизации на множестве Q функционала f(x), который достигает минимума на множестве $M \subset Q$. Пусть дана последовательность x^n такая, что $\varrho(x^n, Q) \to 0$ и $f(x^n) \to f^* = \inf_{x \in Q} f(x)$. В литературе такую последовательность называют обобщенной минимизирующей последовательностью — о.м.п. [5].

Теорема 4. Пусть дана о.м.п.; тогда, если выполнено одно из условий:

 а) пространство конечномерно, Q ограничено, f(x) — непрерывная функция;

б) пространство конечномерно, f(x) — непрерывная функция и множество $Q_{1\epsilon} = \{x : f(x) - f^* \leq \epsilon\}$ ограничено для некоторого $\epsilon > 0$;

 в) пространство конечномерно, f(x) — выпуклая функция, Q выпукло и М ограничено;

г) f(x) линейный функционал, а Q задается конечным числом линейных неравенств или равенств,

TO $\varrho(x^n, M) \to 0.$

Доказательство. Множества $Q_1 = \{x : f(x) - f^* \leq 0\}$ и Q пересекаются по множеству $M = Q \bigcap Q_1$. Пусть выполнено одно из условий а), б) или в). Тогда, как легко видеть, последовательность x^n ограничена. Но непрерывная функция в ограниченной области конечномерного пространства дает корректное ограничение, следовательно, из $f(x^n) \rightarrow \hat{f}^*$ следует $\varrho(x^n, Q_1) \rightarrow 0$.

В рассматриваемых случаях пересечение $Q_{\epsilon} \cap Q_{1\epsilon}$ ограничено, откуда следует корректность пары множеств Q и Q_1 (см. приложение), т. е. $\varrho(x^n, M) \rightarrow 0$.

Если выполнено условие г), то имеем $M = Q \bigcap Q_1$, где $Q_1 = \{x : f(x) - -f^* \leq 0\}$. По условию 3 (см. приложение) система множеств Q, Q_1 корректна, откуда следует $\varrho(x^n, M) \to 0$.

Следствие. Если в теореме 3 дополнительно выполнено условие в) или условие г), то можем утверждать, что $\varrho(x^{n_s}, M) \to 0$.

В заключение автор благодарит Б. Т. Поляка за ценные замечания.

Э. Райк

Приложение

Перечислим основные критерии корректных ограничений и корректных систем множеств.

Корректные ограничения [5]:

1) если пространство конечномерно, g(x) непрерывен и $S = \{x : g(x) \leqslant \varepsilon\}$ ограничено для некоторого $\varepsilon > 0$;

2) если g(x) выпуклый, Q ограничено и существует x^0 такое, что $g(x^0) < 0$;

3) если g(x) выпуклый и $||g'(x)|| \ge \varepsilon > 0$ для всех x таких, что g(x) = 0 (здесь g'(x) означает произвольный опорный функционал к g(x) в точке x);

4) если g(x) дифференцируем, Q ограничено, g'(x) удовлетворяет условию Липшица и существуют $\varepsilon > 0$, $\delta > 0$ такие, что $||g'(x)|| \ge \varepsilon$ при $||g(x)| \le \delta$;

5) если $g(x) \ge 0$ для всех x (т. е. $Q = \{x : g(x) = 0\}$), g(x) дифференцируем, g'(x) удовлетворяет условию Липшица и $||g'(x)||^2 \ge \lambda g(x)$. $\lambda > 0$;

6) если g(x) равномерно выпуклый.

Корректные системы множеств [2, 8]:

1) пространство конечномерно и для некоторого $\varepsilon > 0$ пересечение $\bigcap_{i=1}^{n} Q_{i\varepsilon}$ ограничено; здесь $Q_{i\varepsilon} = \{x : ||x - y|| \leqslant^{i} \varepsilon, y \in Q_i\};$

 пространство конечномерно, Q_i выпуклы и Q_i ограничено;

3) все Q_i задаются конечным числом линейных функционалов типа равенств и неравенств (i = 1, 2, ..., m);

i== 1

4) Q_i выпуклы, $Q = \bigcap Q_i$ ограничено, а $Q_1 \bigcap \bigcap Q_i^0 \neq \emptyset$;

5) все Q_i равномерно выпуклы, кроме, быть может, одного;

6) Q_{α} выпуклы, $Q_{\overline{\alpha}}$ ограничено, а $Q_{\overline{\alpha}} \cap (\bigcap_{\alpha \in A} Q_{\alpha})^{0} \neq \emptyset$, где A — множество

любой мощности.

ЛИТЕРАТУРА

- 1. Брегман Л. М., Докл. АН СССР, 162, № 3, 487-490 (1965).
- 2. Гурин Л. Г., Поляк Б. Т., Райк Э. В., Ж. вычисл. матем. и матем. физ. (1967) (в печати).
- 3. Еремин И. И., Докл. АН СССР, 160, № 5, 994—996 (1965).
- 4. Hart W. L., Motzkin T. S., Pacific J. Math., 6, No. 4, 691-707 (1956).
- 5. Левитин Е. С., Поляк Б. Т., Ж. вычисл. матем. и матем. физ., 6, № 5, 787—823 (1966).
- 6. Альбер С. И., Альбер Я. И., Докл. АН СССР, 171, № 6, 1247—1250 (1966).
- 7. Еремин И. И., Мазуров В. Д., Докл. АН СССР, 170, № 1, 57-60 (1966).
- 8. Райк Э., Изв. АН ЭССР. Физ. * Матем., 16, № 2 (1967).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 6/IV 1967 E. RAIK

FEIERI TÜÜPI MEETODID HILBERTI RUUMIS

Hilberti ruumis H vaadeldakse kahte ülesannet: 1) leida mingi punkt kumerate hulkade ühisosal $Q = \bigcap_{i=1}^{m} Q_i$; 2) minimiseerida pidev ja kumer funktsionaal $\hat{f}(x)$ hulgal Q. Uuritakse mõningaid iteratsioonimeetodeid, kus jada x^n on Feieri jada hulga Q suhtes, s. t. mistahes $x \in Q$ kehtib võrratus $||x - x^{n+1}|| \leq ||x - x^n||$. Täiendavate lisatingimuste olemasolu korral tõestatakse seda tüüpi jadade koonduvus.

E. RAIK

THE METHODS OF FEIER TYPE IN HILBERT SPACE

Two problems in Hilbert space are being considered: 1) finding a point in the intersection of given convex sets $Q = \bigcap_{i=1}^{m} Q_i$, 2) minimizing the given continuous and concave functional on the set Q. Two iteration methods are being discussed. In both cases the iteration sequence x^n is of Feier type with respect to set Q, i. e. for all $\mathbf{x} \in Q$ are $||\mathbf{x} - \mathbf{x}^{n+1}|| \leq ||\mathbf{x} - \mathbf{x}^n||$. With the help of some additional restriction the convergence of the sequences is proved.