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Abstract. For large samples the asymptotic distribution of the sample correlation coefficient

is a normal distribution. The variance of that asymptotic distribution is calculated using the

approximate linearization. It depends on the fourth-order central moments of the general
population. An example is given illustrating usefulness of that result.
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1. THE PROBLEM

The asymptotic normality of statistics is very often used for making
statistical inferences. In simple cases the parameters of the asymptotic
distribution do not depend on the distribution of the general population, but

usually they do. In this paper the asymptotic distribution of the well-known

statistic, the sample correlation coefficient, is considered. Its asymptotic
distribution is normal; the parameters of that distribution are calculated.

2. THE APPROXIMATE LINEARIZATION

One possible method to find the asymptotic distribution is the

approximate linearization ['], pp. 33-34.

Let V, be a random vector converging in probability to a same

dimensional constant vector c,

Va = ¢

and
£

—vn(V, —c¢) — N(O,E),
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where N(0, E) is a normal distribution with the mean vector 0 and the

.
—

£
P B

variance matrix =. Here — marks converging in the distribution.

Denoting by V, a random vector with the distribution N(0, E), V, ~

N(0, E), we have

vn(Vn —e) v Vi + 0(1),

where o(1) — 0. Let now h(V) be a twice differentiable function with a

nonvanishing first derivative at c,

Oh
— 0(0 #O,

and with a bounded second derivative. From Taylor’s formula it follows

that

h(Vy) = h(c) + ä(c)'(V —c)+n)
— aVı n

or

oh
vn(h(Vn) — h(e)) = õ—V(c)V* + o(1).

As the variance matrix of the vector V, is E, DV, = &, we get

Vn(h(Vn) — h(c)) — N(0,TI),

where — —

H ÖÖ—(L/_(C)ES—\};(C)' (1)

So the approximate linearization gives us the possibility of calculating
the asymptotic parameters for a wide range of functions of asymptotically
normal statistics.

3. THE ASYMPTOTIC VARIANCE OF THE SAMPLE

CORRELATION COEFFICIENT

Let us consider a two-dimensional random vector X,

Z

with the variance matrix X,

> (%1 012

012 O/

The correlation coefficient for this vector is p,

p=
012

V011022
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In real problems the variance matrix X is unknown. We can observe the

random vector X and have as a sample its values

X; = (zil, T2), 1=1,2,...,n.

Instead of the matrix 3 we have to use its sample estimation S,

_

[ Sll Sl2
n = (812 822) ”

where
»

1
- -

Sn =

; zXiXi, — XnX;l
i=l

and

1
n

Xn =

š z Xji.

=1

As we are looking for the asymptotic variance of the sample correlation

coefficient, it is obvious [?] that as the vector V,, we have to use the vector

Sn,

Sn = (511, Sl2, 822).

Since s, P o, where

o = (011‚ 012, 022)’‚

it is obvious that as the vector ¢ we have to use the vector o. In such a

choice

V. ~ N(O,E),
where the matrix = is ([3], p. 104)

5 = M 4 — vo' (2)

and Ma is the matrix, composed of the fourth-order central moments,

Mi - Magı2 M1122

My =[| mıll2 Mıl22 Mı222

Mili22 Mi222 MM2222

with elements

m,-jkl = EI[()(Z — EXZ)(XJ — EXJ)(Xk — EX;C)(XZ — EXl)],

7 j, k,1=1,2.
As p is a function of o, we must calculate the derivative

oh 1 1 1\
3—o_(o') —P(*‘ E’ o—l2‚ —‘2;2;) . (3)
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Following the formulae (1), (2), and (3), we get

2 Mılll Mı 1122 M2222
II = P A 2 rtA 2

P I 2 MD M 1122
- ı——|— + —|+ —. (4)

V011022 011 0922 011022

So for a large n we may suppose that the sample correlation coefficient is

asymptotically normal,

e N(25):
4. SOME PROPERTIES OF THE ASYMPTOTIC VARIANCE OF

THE SAMPLE CORRELATION COEFFICIENT

In the following we list some properties of the asymptotic variance of

the sample correlation coefficient.

(1) The asymptotic variance II depends only on the correlation
coefficient p and the fourth-order central moments of the distribution of the

general population.
(2) If X; and X, are independent, then the asymptotic variance II is

equal to one, I = 1. Indeed, if X; and X, are independent, then p = 0,
M1122 = 0110922, and from (4) WE get ll=l.

(3) If X, = a + bX; then the asymptotic variance II is equal to zero,

II = 0. Indeed, if X 5 is a linear function of X3, then p = 1 and denoting
milll = m, we get the following equations:

022 b2oll‚ 012 = bOll,

and

Mıu2=bm, Mı22= b2m,

My222 = b3m, Mag22 = b*m.
Now from (4) we get II = 0.

S. THE BASIC IDEA FOR THE COMPARISON OF NORMAL

AND NON-NORMAL CASES

If we consider a population with a normal distribution and a population
with a non-normal distribution, the asymptotic variance of the sample
correlation coefficient may be different. To see the differences caused by
the type of distribution, we must choose the parameters of comparable
distributions as similar as possible. As the value of the correlation
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coefficient depends only on elements of the variance matrix, we must

choose the distributions which have the same variance matrices. Then the

value of the correlation coefficient for the chosen distributions is the same

and the value of the asymptotic variance depends only on the fourth-order

central moments.

Let us calculate the asymptotic variance II fora normal population. It.is

known (°], p. 106) that fora p-dimensional normal distribution the p? xp*
matrix of the fourth-ordercentral moments is given by the variance matrix

and is calculated by the formula

Ma 4 = (Ip2 +l, ») 2@®X) + vecZvec'X,

where

L: —the p* x p* unit matrix,

Ipp — the p* x p? permutation matrix ([*], p. 22),

vec — operator which transforms a matrix into a vector by stacking the

columns of the matrix one underneath the other (see [*], p. 30).

Hence the fourth-order central moment for the normal distribution is

calculated by the formula

(5)h+ihOjgOi+OigjhT 5Mijgh

and we get
Mi = 30 i?1
Mıu2 = 3012011,
Mg = 207, + 011028

Mjy222 = 3012092,
M92222 = 30'%2 .

Using these values in the formula (4), we get the asymptotic variance I 1 for
a normal distribution

II = (1 — p2)°. (6)

The asymptotic variance of the sample correlation coefficient in case of a

normal distribution depends only on the value of the correlation coefficient.

6. THE FAMILY OF DISCRETE NON-NORMAL DISTRIBUTION

For the planned comparison it would be good to have a family of

discrete two-dimensional distributions for which the correlationcoefficient

may freely change in an interval from 0 to 1. To construct such a family,
let us start from a very simple marginal distribution

p; — p — kp — kp*,
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where the parameters of the distribution, p (0 < p < 1) and k (k > 0), must

satisfy the condition

p(l+k+k)=l

By the proper choice of the parameters we can deform the distribution from

a uniform distribution to a very asymmetric one. In practice that kind of

distribution may be useful for describing the distribution of attitudes which

have three possible values: negative, neutral, and positive.
Using such marginal distributions, we may construct different

two-dimensional distributions. Really, defining the two-dimensional

distribution by table P;

xli/fL‘gi -1 0 1

-1 D 0 0
0 0 kp 0

1 0 0 k2p,

we get the functionally dependent components, X; = X. Defining the

two-dimensional distribution by table P,

D/ -1 0 1

-1 p 2 kp2 k2p2
0 kp2 k2p2 k3p2
1 k2p2 k3p? k4p?,

we get independent components.
Following now the results of Tiit [°], for the mixture of these two

distributions cP,+(l—¢) P,, (0 < ¢ < 1), we get the correlationcoefficient

equal to c. Such mixture is defined by the table

Tli/T 2 -1 0 1

-1 p*'+p'ck(l+k) kp*(l —c) k*p*(l —c)
0 kp*(L—c) k*p'+p'ck(l+k*) — kõp(l-c)
1 k*p*(l — c) kõp*(l — c) k*p? + p?ck?(1 + k).

The family of discrete distributions defined by the last table has the

following properties:
(1) The marginal distributions and all the marginal moments of the

components X; and X, are equal.
(2) Let ax denote the marginal moment of the order k. Then we have

ar = p(k*—l)=l-p(k+2),
as = p(k*+l)=l-—pk,

and

AQ2k+l = 4y,

A2xk = Q2,

k=1,2,...
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Hence the variance matrix of that distribution is

> —

pk(l+3kp) cpk(l+3kp)
cpk(l+3kp) pk(l+3kp)/'

(3) The fourth-order central moments are the following:

Miii — Ma222 = M

= kp(l+ 12kp — 9k%*p?*(2 + 3kp)),
miiz2 = Mi222 = CM,

mıl22 = ecm+oo*+(l — c),

where o 2 denotes the variance of a component,

o? = pk(l + 3kp).

Using these properties, it is easy to get an expression for the asymptotic
variance II:

I = %[03(771 u 4 (ot — 3m) + 2(m — oY) + 201 (7)

7. THE RESULTS

Comparing formulae (6) and (7), it is obvious that for a given value

of the correlation coefficient we can get different values of the asymptotic
variance of the sample correlationcoefficient depending on the distribution

of the general population. For the considered special family the differences

depend on the value of the correlation coefficient of the general population
and on the parameters of the discrete distribution p and k.

Figure 1 illustrates these differences in a special case. The parameters
p and k of the discrete distribution are fixed: ¥ = 9and p = 1/91.
Then the asymptotic variance II of this discrete distribution is computed
by the formula (7) for all possible values of the correlation coefficient c,

0 < ¢ < 1. The graph of the asymptotic variance has been drawn with the

dashed line.

In addition, the asymptotic variance of a normal distribution is

computed by the formula (6) for all possible values of the correlation

coefficient ¢, 0 < ¢ < 1. The graph of that asymptotic variance has been
drawn with the continuous line.

It is supposed that different distributions cause remarkable differences
in the asymptotic variance. This fact opens a possibility of obtaining useful

results by working with the general expression for the asymptotic variance
of the sample correlation coefficient.
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VALIMI KORRELATSIOONIKORDAJA ASÜMPTOOTILINE
JAOTUS

Olga RÖKUNOVA, Anne-Mai PARRING

Suurte valimite korral on valimi korrelatsioonikordaja asümptootiliseks
jaotuseks normaaljaotus. Selle jaotuse dispersioon sdltub üldkogumi jao-
tusest. Kasutades lineaarset ldhendamist on leitud eeskiri astimptootilise
jaotuse dispersiooni arvutamiseks iildkogumi jaotuse neljandat jarku tsent-

raalsete momentide kaudu. On toodud niide, mis kirjeldab saadud tule-

muse kasulikkust.

Fig. 1. Dependence of the asymptotic variance II on the correlation coefficient of the general
population.
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