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Abstract. The k-centres of a random variable X are defined as the points minimizing the

(quadratic) loss function. In the paper an equivalent clustering criterion, the R-function, is defined.

Under some assumptions the R-function of X uniquely determines the distribution of X and can

be regarded as a characterization of the distribution. The possibilities of restoring the distribution

function of X by the given R-function ofX are discussed.
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1. PRELIMINARIES

Let X be a m-variate random vector with the law P and the distribution

function F'. Whenever needed, it will be implicitly assumed that the second

moment of X is finite. Let S = {S),...,Sk} be a Borel-measurable
.. . k .y

k-partition of ™, i.e. ;_; S; = R™, S; (1 5; =O, Vi #j.
Let a(Si) be the conditional expectation of X on Si, i.e. a(Si) =

E(X|S;). The ordered set A(S) = {a(Sl),...,a(Sk)} is called the

conditional means set ofX given S.

Definition 1.1. The function

k

2Wi(S,F)=) /|z — a(Sy)||? dF

i=l 9i

is called the loss function ofthe distribution F' by the partition S.

Using the definition of conditional expectation, it is easy to check the

equality (see, e.g. ['])

Wi (S, F) = E||X||> — Rx(S, F), (1.1)
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where
k

Ri(S, F) =)_ [|a(Si)|*P(S:) (1.2)
=1

is the second moment of the distribution which is concentrated on the set

A(S) with the probability P(S;) at a(S;) (see [?]).

Definition 1.2. The function (1.2) is called the R-function of the

distribution F by the partition S.

Definition 1.3. A k-partition S* = {5t,...,5%} is called optimalfor the

distribution F if it minimizes Wr(S, F) over all k-partitions of™.

From (1.1) it follows that the optimal partition maximizes the

R-function and for distributions with a finite second moment the mini-

mization of the loss function is equivalent to the maximization of the

R-function (see also P]).

2. THE SPACE %'

Definition 2.1. A k-partition S = {Sy,---, Sk} is called convex if all

regions in S are convex.

In the following only the convex partitions in the space R!' are

considered. Since the value of the R-function by an arbitrary k-partition
is not greater than the value of the R-function for a suitably chosen

convex partition, such assumption is not restrictive. In the space R! every

convex k-partition is obtained by using exactly £ — 1 cutting points 21 <

ty <,---,< tg_l. Therefore in the space R! (1.2) reduces to

Ri(ty, - ,tx—l) := Rg(S, F)

k

=3ti )P(t) — Fti (2.1)
I=l

where tl,:--,tx_; are the cutting points to get S, and £y, := —oo,

tx := 00. Obviously, the convergence lim¢, o 0 Risl(tl,- - ,tk) =

Ry(tl, - ,tx—l) holds, and, in case k= 1, lim;_,oR2(t) = (EX)?.
Let us define the b-function of F' by b(t, F) = ffoo xdF(x). If F has

a finite expectation, the b-function can be represented in the following way

(the argument F will be usually dropped):

b(t) = tF(t) — S(t), (2.2)

where S(t) = ffoo F(r)dr < 00.

Obviously, the b-function of F' is continuous iff F' is continuous and the

distribution function F' is uniquely determined by the b-function.
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Using b-functions, we get for (2.1) the form

k 2(b(t;) — b(ti—l))
3Ri(ty,--- ,tk—l)=;m, (2.3)

where b(to) := 0, b(tx) = EX, F(ty) = 0, F(tx) = 1, and (b(t;) —

b(ti—l))*/(F(t:) — F(ti-1)) = oifF(t;) — F(t:i-1) = 0.

Note that ifF' hasa finite second moment and mean u, the convergences

DE N
e A R

take place. IfF is continuous, the b-function ofF and thus the R-function

of F' can be regarded as functions depending on the values of F'. For this

end a change of variables is needed, namely

b(x) = /
-

F~l(w)du, (2.5)
0

where 0 < x < 1 and F7!(u) = inf{t|F(t) > u}. (Of course, the inverse

of F can be defined in some other way, but because the set where F'7! is

not unique has the P-measure zero, all different definitions of F7! yield
the same function b(x)).

Regarding the R-function as a function depending on the values of F,
we get from (2.3)

k
b Ti) — b Ti-

Ry(zl,- - ’xk_l)zz(a:)-———x('ll)’ (2.6)
i=l

? äi

where zg := 0, g := 1, b(xg) :=O, b(zg) := EX.

Given EX, a continuous distribution function is uniquely determined

by its R-function, i.e. the following proposition holds.

Proposition 2.1. Let X ~ F,Y » G be the continuous random

variables such that EX = FEY = u, and Ri(ty,--- ,tx—l,F) =

Ry(tl, - ,tx—l,G) = Ri(tl,- - ,tk—l). Then F= G.

Proof. Without loss of generality assume u = 0. Consider first the case

k=2. Let Ry(t) = Ry(t, F) = Ry(t, G) be the common R-function. From

(2.2) and (2.3)

Ry(f) =

bt F)
=

(tF(t)- SO)
S

FOOA-FO) FOOA-Ft)

— n

GOASGO) GOA-Gt'

where T'(t) = ffoo G(z)dz. Because EX = EY, there exists a point ¢y

such that F'(ty) = G(tp). At any point ¢ the equality F'(t) = G(t) implies
S(t) = T'(t), therefore at the point ty S(ty) = T'(tp). Since F and G are

continuous, the functions S and 7' can be equal at the point ¢( only if there
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exists at least one point t; < to such that F'(t;) = G(t1) and S(¢1) = T'(tl).
Now the continuity of the distribution function implies F'(t) = G(t),t €

[tl, to]. Similarly we get F'(t) = G(t),t € (—oo,to]. The repeating of the

argument presented above in the set (£, co) completes the proof in the case

k =2.

For the general case just note that Ri(-,F) = Rkr(:, G) implies
Ri_l(-, F) = Rx_l(-, G) and the proof is complete. O

If the arguments of the R-function are the probabilities, i.e. R =

Ri(xl,- -+ ,zr_l), the proof ofProposition 2.1 is even simpler. Indeed, for

the case k = 2 we have

V(z,F) bz, Q)
Rı(z, F)= —=—— = PR(z, GW, OS H TEE

and the uniqueness follows from the definition of b(z).

Proposition 2.1 does not hold for discontinuous distribution functions.

Many different discrete distributions with the same AR-function

can be constructed. As a counterexample consider the following discrete

distributions:

In the case k = 2 both distributions have the same R-function which is

equal to 400/9 if —2O < t < 20 and zero elsewhere.

3. RESTORING A CONTINUOUS

DISTRIBUTION BY THE R-FUNCTION

From Proposition 2.1 it follows that, given expectation, the R-function

determines the corresponding continuous distribution uniquely (provided
that such a distributionexists). Therefore the R-function can be regarded as

a characterization of a continuous distribution. Now the question of finding
the distribution function of a given R-function (or loss function) arises.

Suppose we are given the R-function R(-). We are going to find the

corresponding distribution function. Since for every k the function Ry(-)
determines also the function R,(-), we are able to restore the distribution

function if we can do it for the case k = 2. Therefore only the latter case as

the most important and general one is considered.
Let R(-) = R>ı(:) denote the given R-function, let u be the given

expectation. We are looking for a distribution function F' such that

Ry(t, F) = R(t),and EX = u, where X v F. Note that we cannot skip
the fixed expectation assumption, because different distributions having
different means can have the same R-function.

-20 -20/6 -3.884 0 5.275 20

1 1 1 4 2 1

-20 -5.275 0 3.884 20/6 20

1 2 4 1 A 1
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In the paper it is implicitly assumed that every R-function has the

corresponding distribution function, i.e. thereexists a distribution function

F' such that R(t) = Ry(t, F).
Without loss of generality we may assume p = 0. From (2.3) it follows

that the function F' is the solution of the equality

—b(t, F)
—a£ = /R 3.1
FO) ®), (3.1)

where p(F(t)) = /F — F(t)). Note that u = 0 implies b(t) < 0 for

every t. Using (2.2), we get the following differential equation

S(t) = tF(t) +p(F())/RU)

or, eguivalently,

S =tS" + v/R(t)p(S"). (3.2)

There is no direct way to solve (3.2). The parametrizing ¢t = uS’ = vS =

uv + p(v) /(R(u) yields

R'(u) 1 — 2y
SVol —Vsst [u + \/R(u)ä—\/——g(ll_v—)] dv=o. (33)

Equation (3.3) has a symmetric form and, depending on R(t), may be

explicitly solvable. The desired distribution function is the solution in the

form v = v(u).
If the R-function depends on ¢ (as in the case we are considering now),

the change of variables (2.5) does not facilitate our task. Indeed, from (2.5)
t = b'(x) (not necessarily continuous) and Eq. (3.2) takes the form

bar V ROI - x). (3.4)

Now the parametrization b’ = u, z = v, b = —/R(u)v(l —v) yields
again the equality (3.3) and the solution in the form v = v(u) is the desired

distribution function.

Since (3.4) implies

En 1o 3.5)SW

Z RO| -

the parametrizing b= u, b’ = v yields the symmetric differential equation

2 V

(:tl + —J’—-——) du=—YO ke
vR2(v) — 4uß(v) R(v)y/R*v) — 4u’R(v)

—

Equation (3.6) is symmetric and may be explicitly solvable. The desired
distribution function can be directly obtained by substituting the solution
u = u(v) into (3.5) (the particular solution must be chosen to ensure the
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required properties of the distribution function).

Ll
Jlo a 2 c i E rT=——= — — =

.

2 R(v) 2 R(t)

Let us consider the case where the argument of the R-function is the

probability, i.e. given R-function has the form R(z) = Ry(x). Given

such R-function, determination of the distribution function is relatively
easy. Indeed, Eq. (3.2) yields the Clairaut’ differential equation S — S't =

VER(SN(S") = —l(S’), and after the parametrization v = S’, u = ¢, we

have [u —9/(v)]dv =O. Now ¢t = '(S’) =¢/ (F(t)); from this equation
the distribution function can be obtained.

Obviously, in the caseR;(x) the change of variables (2.5) is most useful.

From (2.6) we get

V@
_ R(z), (.7)

z(l —x)

implying b = —v/R(z)(1 — z)z = 1(x). The differentiation t = b’ = Y'(z)
yields the equation ¢ = v’(F'(t)), from which the distribution function can

be obtained.

All the described possibilities of determining the distribution function

are easy to use in the case when R is constant. For example, by (3.7)
b(z) = ¥(x) = —v/Rx(l —z) and the equation for the distribution function

is therefore b’ (z) = VR(2x — 1)/2/z(1—2).
The solution of the obtained equation, the distribution with a constant

R-function is

1 b’ 1 t
= -{1 + ———|=-[l+——|= F(1). 3.8E

By Proposition 2.1 the distribution (3.8) is the only continuous

distribution having the R-function equal to the constant R and mean

zero. Obviously, the second moment of (3.8) is not finite, otherwise the

convergences (2.4) would lead to a contradiction with the assumption
R,(t) = R for every t. In other words: there is no distribution with a

constant loss function (1.1) (this is obvious by intuition), but there do exist

distributions with a constant (and finite) R-function having an infinite loss

function. For such distributions with mean zero the convergences (2.4) are

replaced by the convergences

lim b*(t) = lim o=R
tsoo 1 — F(t) t—o-o 0 F(t) °°
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4. RESTORING A DISCRETE

DISTRIBUTION BY R-FUNCTION

The R-function and the mean do not determine a discrete distribution

P uniquely. Therefore, in order to determine a discrete distribution by its

R-function, additional information is needed.

Every discrete distribution can be considered as consisting of two parts:
a set of atoms and the corresponding masses (a discrete distribution P

can be presented as the sum of Dirac’ measures P = )p;d:,; the set

of points {¢;} designates atoms, the set of the corresponding probabilities
{p;} denotes the masses). A discrete distribution is uniquely determined,
if besides the R-function and the mean one of the described components is

given.
In the following some rules for calculating the discrete distribution,

given the R-function and one of the mentioned components, are discussed.
As before we consider the case £ =2 and i = 0.

Let R = R,(-) be the given R-function. Suppose at first that atoms {¢;}
are given. It means that the R-function is given in the form R = R;(%).
Since the R-function is constant between atoms, only the values of the R-

functionR; := R(t;) are important. We are looking for a set of probabilities
{p;} or, equivalently, for the distribution function F'(). Since b(t;41) =

b(t;) + piritisl, (3.1) implies

V Rirp(Firl) ARı Dla (4.1)

where Fa = F(ti+l). Denoting Fiii — Fi = AF; and At; = tii —ti, (4.1)
we get

V Rivip(Fivl) — VRipl(Fi) + AF; = -AFiAti,

implying

AVREi)e(Firl) LAF; 4.2—pisl = —AF;=TT

At;
°

(4-2)

where Av/R(ti4l)o(Firl) = VRiip(Firl) — VRip(F;). Eguation (4.2) is

the discretecounterpart of (3.3). IfF is continuous, (4.2) yields (3.3) in the

process At; — 0.

As in the continuous case, there is no direct way for solving (4.2), and

therefore also (4.1). However, if F; is known, from (4.1) F;,; can be

calculated. It means that the value of p;;; can be calculated if all the

previous masses up to the p; are known. That suggests the use of the step-
by-step calculation starting from the first atom ¢;. Of course, the latter is

possible only for the distributions with a finitely large number of atoms.

Assume now that the value F; is known. Denoting Fiii = Z; ti =t

and B = \/R;p(F;) +t;.l F;, from (4.1) we obtain

(Rıkat Pr (Risl +2Bt)z +B2= 0. (4.3)
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After solving (4.3) we get the rule for calculating Fj,;:

Riyl +2Bt+ \/R?,, +4R;.IB(t —B)
Fa =" V 7

_+!
URirl +l%)

’
A

where the minus sign must be used ifR;+l — Ri < 0.

Thus we have found an algorithm for determining the distribution

function by its R-function, if the R-function is in the form R = Rk(t) and

the distribution has only finitely many atoms.

Suppose now that we want to restore a discrete distribution by its R-
function and by the set of masses {p;}. It means that the R-function is in

the form R = Rx(x). As usual the case k = 2 is considered.

From (4.1) and (4.2)

_

VEA BFa Avßiup(Firl)
gy=—LIrM MpAA (4.5)

Firy — Fi AF;

Since all components on the right-hand side of (4.5) are known, the atoms

and therefore the distribution can be completely reconstructed. Note that

in the continuous case (4.5) yields the equation t = Y'(F(t)), where ¥(x) =

— /R(z)r(1 — ).
Using (4.5) we are able to determine the distribution function by its R-

function in the form R = Rr(x). Note that the capacity of the set of atoms

is of no importance in the present case.

Example 4.1. The algorithm (4.5) can be used to generate a sample having
a constant R-function (and therefore a constant loss function) between the

smallest and the largest observation. Let the given masses be p; = n7!,
where n is the sample size; the given R-function have the form R; = R,
1 =l,---,n, where the constant R is known. If n =2oand R =l, such a

sample is the following:

+4.358 +1.641 +1.141 +0.858 +0.660 +0.504 +0.374 +0.258 +0.152 +0.050

0050 -0.152 202857 20372 20504 -0.660 20858 -1.141 -1.641 -4.358

Since the loss function is constant between the largest and the smallest

sample point, every such convex partition, which separates at least one of

the points from the others, has the same value of the loss function and is
therefore optimal.
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JAOTUSFUNKTSIOONIDE RESTAUREERIMISEST

Jürı LEMBER

Reaaltelje k-tükeldust nimetatakse antud tõenäosusjaotuse
jaoks optimaalseks, kui ta minimiseerib teatava kriteeriumfunktsiooni

— ruutkaofunktsiooni. Käesolevas töös on uuritud ruutkaofunktsiooniga
mõnes mõttes ekvivalentset kriteeriumi — R-funktsiooni. Kindlatel tingi-
mustel võib R-funktsiooni vaadelda tõenäosusjaotuse karakteristikuna.

Seetõttu pakub huvi tõenäosusjaotuse rekonstrueerimine etteantud R-
funktsiooni (ruutkaofunktsiooni) põhjal. On käsitletud jaotusfunktsiooni
rekonstrueerimise võimalusi nii pidevate kui ka diskreetsetejaotustekorral.
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