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Abstract. The existence of A-type contour polygonal models in the case of zero potential is

proved. As a consequence we may conclude the existence of such models corresponding to

(uniformly) bounded potentials.
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; 1. INTRODUCTION

The concept of a random polygonal model (or field) (RPM) was

introduced by Arak [*?]. Thorough investigation of RPM is given in

several papers by Arak and Surgailis, see for example [> 4], and Arak,
Clifford, and Surgailis [°]. In this paper a special case of RPM, called a

A-type contour polygonal model, is studied. In Section 2 we give a quick
and somewhat simplified overview of the concept ofRPM; the main results

of this paper are given in Section 3.

2. DEFINITIONS

Let 7 be the family of convex bounded domainsT C R?. We will

denote the boundary and the closure of T' by 0T and T, respectively.
Every line [ will be parametrized as| = I(p, ¢), (p, ) € R x [0,7),

where p is the distance from the origin to the line along its normal, and ¢
is the polar angle of the normal.

For any T € 7T, denote by Ly the set of all distinct lines [ in R?

which intersect 7. Such Lr is isomorphic to an open subset of the cylinder
R x [O, 7). Let Ll, be the set of all collections (), = (i, ..., ) of lines
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| € Lrsuchthatl; # I;ifi # 7, i,j = 1,...,n. In other words, Lr, is

the n-fold topological product of L.
A polygonal graph is a planar graph whose edges are finite line

intervals. A vertex is called the k-vertex if it is incident with k£ edges of

the graph.
For any collection of lines (1), € Lr,, we introduce the class I'r(1),, of

polygonal graphs < such that

T = U[lj]7
7=l

where [l;] C [; NT,j = 1,...,n are closed intervals of strictly positive
length and all the 1-vertices of -y lie on OT'. Clearly, I'z(1),, is finite. Set

Irn: = ]) Tr(Dn and Tr: =|J Tz,
(I)nGET,n n=o

where I'r consists of an empty graph.
Let 7 be a finite set. Consider functions w: T — J and denote the set

of the discontinuity points of w by dw. We introduce the class Or(l)n, of

such functions for which there exists a graph v = y(w) € I'r({),, such that

Ow = 7. As J is finite, Q 7 (1), is also finite. Set

ni = U % and : = ]
(l)n ELT,n n=o

where (21 consists of constant functions w. Elements of ()1 will be called

configurations.
A metrizable topology can be introduced in {27 andI' in a natural way,

see for example 2] .
Let B(2r) denote the corresponding Borel o-algebra

of subsets of2. With B(I'r) we denote the corresponding Borel o-algebra
of subsets of I'r.

Let u = p(dl) be a finite nonatomic measure on L. Before we define

the RPM, we have to introduce the class @l, of all measurable functions

F: Qp —RU {4oo} such that the function 1 given by

CO 1
An(Qr) =) ?{'/ du(l)n Y exp{—F(w)}

n=o "~ JLTn wee(Dn

is finite. If this is the case, the functions F' € ®r, are called potentials.
Here we have [, dp =land d"u(l), = p(dh) - - - u(dl,) by definition.

Now the probability measure Pf = Pf, on (Qr, B(Qr)) given by

1 1
PR=oY CMn XD esp{=F()} A€ B

ner
n=o

° £T,n wENT(I)nNA
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is called the RPM corresponding to the line measure / and the potential
Fe (I)T,,u-

One can think about the polygonal field as a random pattern of labels

(taken from the set 7) which cover the whole T and are separated from each

other by finite straight lines which form up a polygonal graph. If we forget
about the labels, we can introduce the random contour polygonal model

(CPM) as follows.

Let u = p(dl) be the same as above and consider measurable functions

F :Tr > RU (+00]). Define the measure A on (I'z,B(I'r)) by

=1
=32[Pi D eF. O

n=o
° SLa €T()NA

Then the corresponding probability measure

(2)Qr(4) =Nusı
is called the CPM corresponding to the potential F and the line measure v

provided the denominatorin (2) is finite.

One problem still open is the existence of RPM in case F' = const.

In this paper we are going to answer the question — Does the CPM

corresponding to constant potential exist? — positively in one particular
case. Namely, we are going to examine CPMs which are based on so-called

A-type polygonal graphs. We call a graph y a A-type graph if

(1) all the 2-vertices of y lie in the interior (7'\ÖT) of T;
(2) all the 1-vertices of y lie on the boundary of 7';
(3) y has no k-vertices for k > 3.

3. AN ESTIMATE OF THE VOLUME OF THE SET OF A-TYPE

POLYGONAL GRAPHS

Let u(dl) = u(dp, dp) be stationary and isotropic, i.e. u(dl) = dpdwy.
Denote with 77 the set of bounded rectangles in R* whose boundaries are

parallel to the coordinate axes.

Theorem 1. LetT'r consist ofA-type graphs only, u(dl) be stationary and

isotropic,and T € T'. IfF = const < 00, then

)\(FT) < 00.

Proof. Let F'(y) be egual to a finite constant, F(y) = F < co. Then the

measure vr can be expressed as follows:

oo o 0 1
MPr) = e 3oACr) =e

™ [ra @
n=o n=o * YLT,n
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Now the following lemma holds. Proof of the lemma is given in Section

3.1.

Lemma 1. Under the conditions ofTheorem 1 and if in addition Tis a unit

square, we haveforn > 1

MTr,n) <C*
!

:

n
(Inn - Inlnn)] °

—187 ewhere C =

a

An easy generalization of this lemma is the next one, which proves the

convergence of the series in (3).

Lemma 2. Let the conditions of Theorem 1 hold. IfT is a rectangle with

sidesAand B, then for F = const and n > 1 we have

P) <cr
/——— |A !

ihn-hhnhn]|

where C1 = Ire/A2 + 82.

[]

Remark. As already mentioned by Arak and Surgailis [> ], in a general
case the existence of polygonal fields, i.e. the potentials F, is not trivial.

Mikkov [®] has considered polygonal patterns containing T -type junctions
only. Unfortunately, the method used by him cannot be applied in our case

although the results obtained look similar. Clifford ["] has shown that a

constant function F' may be potential for general RPM if 7' is sufficiently
small. In our case we restricted to A-type graphs, but this estimate holds

for any finite T'.

Thus, for u stationary and isotropic, F' = const is a potential and the

contour polygonal model QX exists. It follows fromTheorem 1 that ifF'(y)
is uniformly bounded, i.e. if |F(y)| < M < oo for each v € 'y, then
the corresponding CPM exists. Moreover, we do not always need uniform

boundedness. For example, if F' is given by F'(y) = aL(y), where L(7) is

the length of the edges of y and T' € 7 is a rectangle with the longer side

equal to constant B, say, we have |F(v)| = |a|L(y) < |a|v2Bn. Thus,
for o < 0 (o > 0 is trivial), we have

AMTr,) <exp {—n [—lalx/žB — 1n(97ev28) + In(lnn — Inln n)] } .

So, if |a| and B are finite, the series > , vr(T'7,n) converge. Note that
the function L(7y) can be replaced also by some other function depending
on v which is O(n), i.e. bounded with respect to n.
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3.1. Proof of Lemma 1

In this section we give the proof of Lemma 1. Consider a polygonal
graph consisting of n line segments and having A-type junctions only on

a unit square 7'. To prove the lemma, we are going to introduce new

coordinates for the line segments, which determine the pattern uniquely and

which help us to estimate the cardinality of the set I'r({),,.
We call the left end of a line segment its beginning and the right end of

a line segment its end. Let us first look at the intersection points inside 7.

There are threepossible kinds of intersection points:
(a) points, where exactly two line segments begin; let the number of

these points be s;

(b) points, where one line segment ends and the other has its beginning;
let their number be 7y,

(c) points, where both line segments end.

Let the number of the line segments which have their beginnings on

ÖT be ry. Obviously, 11 + r 9 + 2s = n. In the following we have

r = r 1 + 19 = n — 2s. Thus, as s may have its values from the set

{0,1,2,...,[%]}, we have r having its values from the set {0,1,... ,n}
in such a way that the previous equation holds. Here [-] means the (lower)
integer part.

We divide the line segments into two groups depending on their

beginning point and give different coordinates to the members of these

groups. It is clear that every pair of line segments which have a common

beginning point describes thispoint uniquely. So, if the line segment begins
from a point which is the beginning point also for another line segment,
we give to it coordinates (p, ) so that they are equal to the usual polar
coordinates, i.e. (p, ) = (p, ¢).

The remaining line segments have their beginnings in the points where

some other line segment ends or on the boundary of 7'. We describe these

line segments by a triple of coordinates ((q, ¢);t), where ¢ is the length
of the line segment from which this particular line segment begins, or the

distance along the boundary edge from the beginning of that edge to the

beginning point of that particular line segment, respectively. By ¢ we

denote the usual polar angle. The discrete parameter ¢ shows from which

particular line segment or boundary edge the line segment begins. Thus we

have to give indices 1, ... ,n to the line segments and indices a, b, c, say,
to the boundary edges of the square.

So, the pattern is described by the coordinates:

{(pla ()01)7 ...) (p237 9025)3 ((q2s+l7 ()025-1—1)7 t23+1)7 <oy ((qn) (;Ün), tn)} ,
(4)

where

OszSx/ž, —%5(701571-7 7’:1))287

o<¢ <V2, DE
tjE{l,...,j—-l}U{a,b,c}, tj?étkifj?ék, j=25+1,...,n.
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Here we have denoted by a the lower edge, by b the left edge, and by c the

upper edge of 7'.

By definition the coordinates (g, ) are related to the polar coordinates

(p, ) in such a way thatthe transition Jacobian can be evaluated as follows:

Õpj —Pi
õp;szdet(a—ä ä)ZÕ—JZCOSejžI; J=23+1,...,T1„

dg; wp; J

where ©; is the angle between the (previous) line segment, from the end

of which the line segment under observation begins, and the normal of

that observed line segment. Here we used the fact that p; and ¢; are

independent, thus g—g = 0.

Now we can get the upper bound for the measure A of the set of patterns
FT,nI

[3]

ML) <S [2B)1(T,) — š |:23 s (28)'
T '/dpldgol } 'dp2sd9o2s

%
(25 +3)"%

(n — 2s)! /° /dgas+ld¥2s41 - 'dQnd(pn:l ;

(5)

where the multiplier (228—33),' is the number of possible pairs into which the set

of 2s elements can be divided, and (2s + 3)™~2 refers to the coordinates

t;; we have n — 2s coordinates tos,1, . . . , t,, €ach of which can take values
from the set of 25+3 elements. The fractions Ü and (n+2s)‚ come in as we

count every line segment only once and the order of them is not important.
From (4) and (5) we get

[%] 28

)\(FT,n) < z [2%B' (x/ž)25 (3_27[) (28+3)n—2s

1
n—2s

3T
2s

“ ]
n 2]

-

-

(3r (25 +3)”—>

- (fi) ;m (6)
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The last sum can be evaluated as follows:

ž (2s + 3)772 >3"
+ ž (25 + 3)"2

£~
2° sl (n — 2s)! n ZRA 2s)!

< {4_% (55)""%(25)(2s —1) --- (25 — s + 1)
n!

—
28 2s! (n — 2s)!

3]
3r 5" ny\ 1

<42 g,
oni

T
n! š (23) 525° CD

Now, consider the function f(s) = s”7* fors = 1,...,%. One can

show by the iteration process that the inequality

n—s
n

"

S [lnn — lnlnn] ®)

holds foreverys =1,...,3, n>l.

Thus, from (6), (7), and (8) we get using ,;—7: < %:

rd? /3*° 5" n n[%]nl
AT < [— —+— |ma —(Trn)

< (x/ž) (n! 6 [lnn—lnlnn] )3:21 (23) 525

Nn rn n n

< o (STY' ] n 6
- /2) n!|lnn—lnlnn 5

18me\ " 1
”

< — —_— .
— V 2 Inn —lnlnn

. D0

To prove Lemma 2, we have to replace the conditions in (4) with the

following ones:

OSPzS VA2+B27 —%S%SW, 7;:1,"'7281

o<¢; <VA*+B? -7 <y;<m,
ti€{l,...,j—l}U{a,bc} t;#tifj#k, j=2s+l,..,n.

]
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A-TÜÜPI JUHUSLIKE POLÜGONAALVÄLJADE
OLEMASOLUST

Tarmo KOLL

On töestatud A-tüüpi polügonaalväljade olemasolu nullpotentsiaali
korral. Selleks kasutatud töestus vöimaldab järeldada vastavat tüüpi
väljade olemasolu ka tökestatud potentsiaalide puhul.
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