ON NON-NUCLEAR OPERATORS WITH NUCLEAR ADJOINTS

Oleg REINOV

Department of Mathematics, St Petersburg State University, Bibliotechnaya Sq. 2, 198904 St Petersburg, St. Peterhof, Russia

Received 14 December 1995, accepted 4 June 1996

Abstract

We improve some previous finite-dimensional results in connection with approximation conditions in Banach spaces. In particular, we show that there exist a separable conjugate Banach space W with a basis and a constant $C>0$ such that for each $n \in \mathbb{N}$ there is an equivalent norm $\|\cdot\|_{n}$ on W and an n-dimensional operator $t_{n}: W \rightarrow W$ with the following properties: $W_{n}=\left(W,\|\cdot\|_{n}\right)$ possesses the \sqrt{n}-metric approximation property $(\sqrt{n}$-MAP); W_{n} does not have $C^{-1} \sqrt{n}$-MAP; trace $t_{n}=1$; the norm of t_{n} in the space I $\left(W_{n}, W_{n}\right)$ of Grothendieck integral operators is not more than C / \sqrt{n}; the norm of t_{n} in the space I $\left(W, W_{n}\right)$ is not more than C; and the norm of t_{n} in the space $\mathrm{N}\left(W, W_{n}\right)$ of nuclear operators is not less than $c \sqrt{n}$ for some absolute constant $c>0$.

Key words: Banach spaces.

In this paper we improve some previous results related to various approximation conditions in Banach spaces. We are interested in both the qualitative and quantitative aspects in these directions. In particular, we obtain new analogues of the main result of $\left.{ }^{1}\right]$ in the case of spaces with the bounded approximation property (BAP) as well as in the case of finite-dimensional operators. For example, it is easy to show that for an n dimensional operator T one has the following estimate between its nuclear and (Grothendieck) integral norms: if $\nu(T)=1$, then $i(T) \geq 1 / \sqrt{n}$. We show that this is asymptotically sharp even in the spaces with the BAP.

Our notations are standard. For main notions in the theory of operator ideals we refer to $\left[^{2}\right]$; for notions of tensor products, approximation conditions and the Radon-Nikodým property see [${ }^{3}$]. If X is a Banach space, $J: X \rightarrow X^{* *}$ denotes the canonical injection. It is convenient to say that a Banach space X is completely separable if X and all its duals $X^{*}, X^{* *}, \ldots$ are separable.

Theorem 1. There exists a completely separable conjugate Banach space W with a basis such that for each $\alpha \geq 1$ there is an equivalent norm $\|\cdot\|_{\alpha}$ on W for which the space $W_{\alpha}=\left(W,\|\cdot\|_{\alpha}\right)$ has the following properties:
(i) $W_{\alpha} \in \alpha$-MAP;
(ii) $W_{\alpha} \notin \beta$-MAP, $\forall \beta<\alpha$;
(iii) for any $\varepsilon>0$ there exists a nuclear operator $t \in W^{*} \widehat{\otimes} W$ so that (a) trace $t=1$, (b) $1 / \alpha \leq\|t\|_{\mathrm{I}\left(W_{\alpha}, W_{\alpha}\right)} \leq(1+\varepsilon) 1 / \alpha$, (c) $1 \leq$ $\|t\|_{\mathrm{N}\left(W_{\alpha}, W_{\alpha}\right)} \leq 1+\varepsilon$, (d) $\|t\|_{\mathrm{I}\left(W, W_{\alpha}\right)} \leq 1+\varepsilon$, (e) $\|t\|_{\mathrm{N}\left(W, W_{\alpha}\right)} \geq c \alpha$ for some absolute constant $c>0$.

Proof. Since there is a separable reflexive Banach space without the approximation property (AP) (see, e.g., $\left[{ }^{2}\right], 10.4$), it follows from [${ }^{4}$] (Corollary 1 and its proof) that there exists a completely separable Banach space Z such that $Z^{* *}$ has a Schauder basis and $F=Z^{* *} / J Z$ is a separable reflexive Banach space without the AP. Moreover, given $\varepsilon>$ 0 , by using the lifting from F to $Z^{* *}$ we can choose a tensor element $t_{1} \in F^{*} \widehat{\otimes} Z^{* *}$ with the property that $\phi \circ t_{1}$ (where $\phi: Z^{* *} \rightarrow F$ is the quotient map) generates the null operator, $t_{1}(F) \subset J Z$, trace $\phi \circ t_{1}=1=$ $\left\|\phi \circ t_{1}\right\|_{F^{*} \widehat{\otimes} F} \geq(1+\varepsilon)^{-1}\left\|t_{1}\right\|_{\wedge}$. We will show that the space $W=Z^{* *}$ and the tensor $t \in W^{*} \widehat{\otimes} W, t=t_{1} \circ \phi$, satisfy all the conditions of the theorem.

Since $1=$ trace $\phi \circ t_{1}=$ trace $t_{1} \circ \phi \leq\|t\|_{\wedge} \leq\left\|t_{1}\right\|_{\wedge} \leq 1+\varepsilon$, we get: $1=\operatorname{trace} t \leq\|t\|_{\wedge} \leq 1+\varepsilon$.

For any fixed $\alpha \geq 1$, let us define an equivalent norm on $Z^{* *}$ in the following way: $\left|\left|\left|z^{\prime \prime}\right|\|\equiv\| z^{\prime \prime} \|_{\alpha}=\max \left\{\left\|z^{\prime \prime}\right\| ; \alpha d\left(z^{\prime \prime}, J Z\right)\right\}\right.\right.$, where $d\left(z^{\prime \prime}, J Z\right)=\inf _{z \in Z}\left\|z^{\prime \prime}-J(z)\right\|$. Set $W_{\alpha}=\left(Z^{* *}, \mid\|\cdot\| \|\right)$.

Since $\left\|z^{\prime \prime}\right\| \leq\left\|z^{\prime \prime}\right\|\|\leq \alpha\| z^{\prime \prime} \|$, for the identity map $j=j_{\alpha}$: $W_{\alpha} \rightarrow Z^{* *}$ we have $\|j\| \leq 1$ and $\left\|j^{-1}\right\| \leq \alpha$. The space $Z^{* *}$ has the metric approximation property (MAP), so $W_{\alpha} \in \alpha$-MAP. To simplify the further reading, it is convenient to keep in mind the following diagram:

$$
\begin{gathered}
W_{\alpha} \xrightarrow{j} Z^{* *} \xrightarrow{t} J Z \subset Z^{* *} \xrightarrow{j^{-1}} W_{\alpha} \xrightarrow{R} W_{\alpha} . \\
\searrow^{\phi} \nearrow t_{1} \\
F
\end{gathered}
$$

If $z^{\prime \prime} \in Z^{* *}$, then $\left\|\phi\left(z^{\prime \prime}\right)\right\|=d\left(z^{\prime \prime}, Z\right) \leq \alpha^{-1}\| \| z^{\prime \prime}\| \|$, i.e. $\|\phi\|_{\mathrm{L}\left(W_{\alpha}, F\right)}$ $\leq 1 / \alpha$. Therefore,

$$
\begin{aligned}
\|t\|_{\mathrm{N}\left(W_{\alpha}, W_{\alpha}\right)} & =\left\|j^{-1} \circ t_{1} \circ \phi\right\|_{\mathrm{N}\left(W_{\alpha}, W_{\alpha}\right)} \\
& \leq\left\|j^{-1}\right\|\left\|t_{1}\right\|_{\mathrm{N}\left(Z^{* *}, Z^{* *}\right)}\|\phi\|_{\mathrm{L}\left(W_{\alpha}, F\right)} \leq 1+\varepsilon .
\end{aligned}
$$

On the other hand, $\|t\|_{\mathrm{N}\left(W_{\alpha}, W_{\alpha}\right)} \geq$ trace $t=1$. This proves the property (iii)(c).

To prove (iii)(b), consider a finite-dimensional operator $R \in W_{\alpha}^{*} \otimes W_{\alpha}$,
$\||R|\| \leq 1$. Since $t_{1}(F) \subset J Z$ and $\|\|\cdot\|\|=\|\cdot\|$ on $J Z$, we obtain

$$
\begin{aligned}
\mid \text { trace } R \circ t \mid & =\mid \text { trace } R \circ t_{1} \circ \phi \mid \leq\|R J\|_{\mathrm{L}\left(Z, W_{\alpha}\right)}\left\|t_{1} \circ \phi\right\|_{\mathrm{I}\left(W_{\alpha}, J Z\right)} \\
& \leq \alpha^{-1}\left\|t_{1}\right\|_{\mathrm{I}(F, J Z)}=\alpha^{-1}\left\|t_{1}\right\|_{F^{*} \widehat{\otimes} Z^{* *}} \leq \alpha^{-1}(1+\varepsilon) .
\end{aligned}
$$

Hence $\|t\|_{\mathrm{I}\left(W_{\alpha}, W_{\alpha}\right)} \leq \alpha^{-1}(1+\varepsilon)$. Furthermore,

$$
\begin{aligned}
1 & \leq\|t\|_{\mathrm{N}\left(Z^{* *}, Z^{* *}\right)}=\|t\|_{\mathrm{I}\left(Z^{* *}, Z^{* *}\right)} \\
& \leq\|j\|_{\mathrm{L}\left(W_{\alpha}, Z^{* *}\right)}\|t\|_{\mathrm{I}\left(W_{\alpha}, W_{\alpha}\right)}\left\|j^{-1}\right\|_{\mathrm{L}\left(Z^{* *}, W_{\alpha}\right)} \leq \alpha\|t\|_{\mathrm{I}\left(W_{\alpha}, W_{\alpha}\right)} .
\end{aligned}
$$

This proves (iii)(b).
The assertion (ii) now follows from (iii)(a)-(c).
To prove (iii)(d) note that if $R \in W_{\alpha}^{*} \otimes Z^{* *}$ is any finite-dimensional operator, then as above we get

$$
\begin{aligned}
|\operatorname{trace} R \circ t| & \leq\|R J\|_{\mathrm{L}\left(Z, Z^{* *}\right)}\left\|t_{1} \circ \phi\right\|_{\mathrm{I}\left(Z^{* *}, J Z\right)} \\
& \leq\left\|t_{1}\right\|_{\mathrm{I}(F, J Z)}\|\phi\|_{\mathrm{L}\left(Z^{* *}, F\right)} \leq\left\|t_{1}\right\|_{F^{*} \widehat{\otimes} Z^{* *}} \leq 1+\varepsilon .
\end{aligned}
$$

Finally, let us prove (iii)(e). Since $\|\phi\|_{\mathcal{L}\left(W_{\alpha}, F\right)} \leq 1 / \alpha$,

$$
\left\|j^{-1} t_{1}\right\|_{N\left(F, W_{\alpha}\right)} \geq \alpha \mid \text { trace } \phi \circ j^{-1} \circ t_{1}|=\alpha| \text { trace } \phi \circ t_{1} \mid=\alpha .
$$

Note that the subspace $\phi^{*}\left(F^{*}\right)$ is complemented in the space $Z^{* * *}$ (see ${ }^{4}$], Theorem and the proof of Corollary 1). Hence the natural mapping $F^{*} \widehat{\otimes} W_{\alpha} \rightarrow Z^{* * *} \widehat{\otimes} W_{\alpha}$ induced by ϕ^{*} is an isomorphic embedding; so $\|t\|_{\mathrm{N}\left(Z^{* *}, W_{\alpha}\right)} \geq c \alpha$.

Theorem 2. There exist a separable conjugate Banach space W with a basis and a constant $C>0$ such that for each $n \in \mathbb{N}$ there are an equivalent norm $\|\cdot\|_{n}$ on W and an n-dimensional operator $t=t_{n}$: $W_{n} \rightarrow W_{n}$, where $W_{n}=\left(W,\|\cdot\|_{n}\right)$, with the following properties:
(i) $W_{n} \in \sqrt{n}$-MAP;
(ii) $W_{n} \notin C^{-1} \sqrt{n}$-MAP;
(iii) $\|t\|_{\mathrm{I}\left(W_{n}, W_{n}\right)} \leq C / \sqrt{n}$;
(iv) $\|t\|_{\mathrm{N}\left(W_{n}, W_{n}\right)} \geq \operatorname{trace} t=1$;
(v) $\|t\|_{\mathrm{I}\left(W, W_{n}\right)} \leq C$;
(vi) $\|t\|_{\mathrm{N}\left(W, W_{n}\right)} \geq c \sqrt{n}$ for some absolute constant $c>0$.

Proof. We use the fact that there exists a separable Banach space G with the property that $\mathrm{N}_{1}(G, G)=G^{*} \widehat{\widehat{\otimes}} G$ (see [5]). By [4], Corollary 1 , one can find a separable Banach space Z such that $Z^{* *}$ has a basis and $F=Z^{* *} / J Z$ is isomorphic to the space G. Thus, there is a constant $C_{0}>0$ such that for every finite-dimensional operator $U \in \mathrm{~L}(F, F)$ we have $\|U\|_{\wedge} \leq C_{0}\|U\|$. Like in the proof of the previous theorem, we will set $W=Z^{* *}, \mid\left\|z^{\prime \prime}\right\|\|\equiv\| z^{\prime \prime} \|_{n}=\max \left\{\left\|z^{\prime \prime}\right\| ; \sqrt{n} d\left(z^{\prime \prime}, J Z\right)\right\}$, $W_{n}=(W,|||\cdot|||)$.

We will need the following auxiliary result.

Lemma. Let Y be an infinite codimensional subspace of a Banach space X. For each $\varepsilon>0$ and every $n \in \mathbb{N}$ there exists an n-dimensional operator Q in X such that $\pi_{2}\left(Q^{*}\right) \leq(1+\varepsilon) \sqrt{n}$; trace $Q=n$ and Q is representable in the form $Q=\sum_{1}^{N} f_{k}^{\prime} \otimes x_{k}$, where $f_{k}^{\prime} \in Y^{\perp}$ and $\sum\left\|f_{k}^{\prime}\right\|\left\|x_{k}\right\| \leq(1+\varepsilon) n$.
Proof of Lemma. Let E be an n-dimensional subspace of $Y^{\perp}, j: E \rightarrow$ X^{*} be the identity embedding, and R be a continuous projection from X^{*} onto E such that $\pi_{2}(R) \leq \sqrt{n}$ (see [$\left.{ }^{2}\right], 28.2$). Since $\|R\|_{\wedge}=$ trace $R=n$, for the tensor element $R \in X^{* *} \widehat{\otimes} E$ we can find a finite nuclear representation $R=\sum_{1}^{N} x_{k}^{\prime \prime} \otimes f_{k}^{\prime}$, with $f_{k}^{\prime} \in E, x_{k}^{\prime \prime} \in$ $X^{* *}$, and $\sum\left\|f_{k}^{\prime}\right\|\left\|x_{k}^{\prime \prime}\right\| \leq \sqrt{1+\varepsilon} n$. By the local reflexivity principle (see, e.g., $\left[{ }^{2}\right], 28.1$), there exists a one-to-one operator $S: E_{0}=$ $\operatorname{span}\left[(j R)^{*}\left(X^{* *}\right) \cup\left\{x_{k}^{\prime \prime}\right\}_{1}^{N}\right] \rightarrow X$ such that $\left.S x^{\prime \prime}\right|_{E}=\left.x^{\prime \prime}\right|_{E}$ for every $x^{\prime \prime} \in E_{0}$ and $\|S\| \leq \sqrt{1+\varepsilon}$.

Let us set $Q=S(j R)^{*} J=S R^{*} j^{*} J$:

$$
X \xrightarrow{J} X^{* *} \xrightarrow{j^{*}} E^{*} \xrightarrow{R^{*}} R^{*} j^{*}\left(X^{* *}\right) \xrightarrow{S} X .
$$

It is clear that $\pi_{2}\left(Q^{*}\right) \leq(1+\varepsilon) \sqrt{n}$ and $\operatorname{dim} Q=n$. If $x \in X$, then $Q x=S R^{*} j^{*}(J(x))=S\left(\sum_{1}^{N}\left\langle f_{k}^{\prime}, j^{*} J(x)\right\rangle x_{k}^{\prime \prime}\right)=\sum_{1}^{N}\left\langle f_{k}^{\prime}, x\right\rangle S x_{k}^{\prime \prime}$, i.e. $Q=\sum f_{k}^{\prime} \otimes x_{k}$, where we have $x_{k}=S x_{k}^{\prime \prime} \in X, f_{k}^{\prime} \in Y^{\perp}$ and $\sum\left\|f_{k}^{\prime}\right\|\left\|x_{k}\right\| \leq(1+\varepsilon) n$. Finally, trace $Q=\sum\left\langle f_{k}^{\prime}, S x_{k}^{\prime \prime}\right\rangle=\operatorname{trace} R=n$ (since $f_{k}^{\prime} \in E$ and $\left.S x_{k}^{\prime \prime}\right|_{E}=x_{k}^{\prime \prime}$ for all k).

Fix $n \in \mathbb{N}, n>3$, and let $\varepsilon>0$. Let Q be an operator from the above lemma in the case of spaces $Y=J Z$ and $X=Z^{* *}$, and set $t \equiv t_{n}=1 / n Q$. The operator t can be factored through the space $F=Z^{* *} / J Z$ in the following way:

$$
Z^{* *} \xrightarrow{\phi} F \xrightarrow{t_{1}} Z^{* *},
$$

where ϕ is the quotient map, $t_{1} \in F^{*} \otimes Z^{* *}, \operatorname{dim} t_{1}=n,\left\|t_{1}\right\|<2 / \sqrt{n}$, $\left\|t_{1}\right\|_{\wedge}<2$, and trace $t=$ trace $t_{1} \circ \phi=1$.

Consider the tensor element $\phi \circ t_{1} \in F^{*} \hat{\otimes} F\left(\phi \circ t_{1}\right.$ is of the form $\left.1 / n \sum_{1}^{N} f_{k}^{\prime} \otimes \phi\left(x_{k}\right)\right)$. Since $\left\|\phi \circ t_{1}\right\|<2 / \sqrt{n}$, we have also $\left\|\phi \circ t_{1}\right\|_{\wedge}<$ $2 C_{0} / \sqrt{n}$. Hence, the finite-dimensional operator $\phi \circ t_{1}$ admits a nuclear representation $\sum_{1}^{\infty} g_{k}^{\prime} \otimes f_{k}$ with $g_{k}^{\prime} \in F^{*}, f_{k} \in F$, and $\sum\left\|g_{k}^{\prime}\right\|\left\|f_{k}\right\|<$ $2 C_{0} / \sqrt{n}$. By lifting the sequence $\left\{f_{k}\right\}$ to a sequence $\left\{z_{k}^{\prime \prime}\right\}$ of elements of the space $Z^{* *}$ with almost the same norms, we can get a tensor $t_{2}=$ $\sum g_{k}^{\prime} \otimes z_{k}^{\prime \prime} \in F^{*} \widehat{\otimes} Z^{* *}$ for which $\left\|t_{2}\right\|_{\wedge} \leq 2 C_{0} / \sqrt{n}$ and $\phi \circ t_{2}=\phi \circ t_{1}$. It follows from the last equality that $\left(t_{2}-t_{1}\right)(F) \subset J Z$. Now we are ready to check the properties (i)-(vi) for the operator t.

The condition (i) is fulfilled by the definition of the space W_{n}; (iv) is obvious. To prove (iii), let us take a finite-dimensional operator $R \in$
$W_{n}^{*} \otimes W_{n}$ with $\left|\left||R| \| \leq 1\right.\right.$. If we denote by $j: W_{n} \rightarrow Z^{* *}$ the identity embedding, then

$$
\begin{aligned}
\mid \text { trace } R \circ t \mid= & \mid \text { trace } R \circ t_{1} \circ \phi \mid \\
\leq & \mid \text { trace } R \circ\left(t_{1}-t_{2}\right) \circ \phi|+| \text { trace } R \circ t_{2} \circ \phi \mid \\
\leq & \|R J\|_{\mathrm{L}\left(Z, W_{n}\right)}\left\|t_{1}-t_{2}\right\|_{\mathrm{I}(F, J(Z))}\|\phi\|_{\mathrm{L}\left(W_{n}, F\right)} \\
& +\left\|R j^{-1}\right\|_{\mathrm{L}\left(Z^{* *}, W_{n}\right)}\left\|j \circ t_{2}\right\|_{\mathrm{I}\left(F, Z^{* *}\right)}\|\phi\|_{\mathrm{L}\left(W_{n}, F\right)} .
\end{aligned}
$$

Since $\left\|j^{-1}\right\| \leq \sqrt{n},\|j\| \leq 1$, and $\|\phi\|_{\mathrm{L}\left(W_{n}, F\right)} \leq 1 / \sqrt{n}$, we have:

$$
\begin{aligned}
\mid \text { trace } R \circ t \mid & \leq\left\|t_{1}-t_{2}\right\|_{F^{*}} \widehat{\otimes} Z^{* *} \\
& <\left(2+\frac{1}{\sqrt{n}}+\sqrt{n}\left\|t_{2}\right\|_{F^{*} \widehat{\otimes} Z^{* *}} \frac{1}{\sqrt{n}}\right) \frac{1}{\sqrt{n}}+\frac{2 C_{0}}{\sqrt{n}} \leq \frac{2 C_{0}}{\sqrt{n}}\left[2+\frac{1}{\sqrt{n}}\right] \leq \frac{5 C_{0}}{\sqrt{n}} .
\end{aligned}
$$

Therefore, $\|t\|_{\mathrm{I}\left(W_{n}, W_{n}\right)}<C / \sqrt{n}$, where $C=5 C_{0}$. The condition (ii) follows from (iv) and the last inequality.

To prove (vi), let us note that $\left\|j^{-1} t_{1}\right\|_{\mathrm{N}\left(F, W_{n}\right)} \geq \sqrt{n}$ trace $\phi t_{1}=\sqrt{n}$. Therefore, $\|t\|_{\mathrm{N}\left(Z^{* *}, W_{n}\right)}=\left\|t_{1} \phi\right\|_{\mathrm{N}\left(Z^{* *}, W_{n}\right)} \geq c \sqrt{n}$.

Finally, if $R \in W_{n}^{*} \otimes Z^{* *}$, with $\|R\| \leq 1$, then as above we get:

$$
\begin{aligned}
\mid \text { trace } R \circ t \mid \leq & \|R J\|_{\mathrm{L}\left(Z, W_{n}\right)}\left\|t_{1}-t_{2}\right\|_{\mathrm{I}(F, J(Z))}\|\phi\|_{\mathrm{L}\left(Z^{* *}, F\right)} \\
& +\left\|R j^{-1}\right\|_{\mathrm{L}\left(Z^{* *}, W_{n}\right)}\left\|j \circ t_{2}\right\|_{\mathrm{I}\left(F, Z^{* *}\right)}\|\phi\|_{\mathrm{L}\left(Z^{* *}, F\right)} \\
< & \left(2+\frac{2 C_{0}}{\sqrt{n}}\right)+\frac{2 C_{0}}{\sqrt{n}} \leq C=5 C_{0} .
\end{aligned}
$$

This shows that (v) is fulfilled.
Corollary 1. If Z is a separable Banach space such that $Z^{* *} \in \mathrm{AP}$ and $Z^{* *} / Z \notin \mathrm{AP}$, then the natural injection $J: Z \rightarrow Z^{* *}$ can be factored through a separable Banach space X which has the AP but does not have the $B A P$.

Proof. This is obtained essentially in the proof of Theorem 1: if W_{1}, W_{2}, \ldots are spaces constructed there (for $\alpha=1,2, \ldots$), then, by definition of the norm $\left|\|\cdot \mid\|_{\alpha}\right.$, for each $\alpha=1,2, \ldots$ the identity injection $i_{\alpha}: Z \rightarrow W_{\alpha}$ is an isometric embedding and the norm of the identity map $j_{\alpha}: W_{\alpha} \rightarrow Z^{* *}$ is not more than 1 . Let us set $X=\left(\sum_{n=1}^{\infty} W_{n}\right)_{l_{1}}$ and define operators $A: Z \rightarrow X$ and $B: X \rightarrow Z^{* *}$ by

$$
A z=\left\{\frac{1}{2^{n}} i_{n} z\right\}_{n=1}^{\infty} \quad \text { and } \quad B\left\{w_{n}\right\}_{n=1}^{\infty}=\sum_{n=1}^{\infty} j_{n} w_{n}
$$

Then $\|A z\|=\sum_{n=1}^{\infty} 2^{-n}\|z\|=\|z\|,\|B\| \leq 1, B A z=B\left\{2^{-n} i_{n} z\right\}=$ $\sum_{n=1}^{\infty} 2^{-n} j_{n} i_{n} z=J z$.

Corollary 2. There exist completely separable Banach spaces X, Y and operators $A \in \mathrm{~L}(Y, X), B \in \mathrm{~L}\left(X, Y^{* *}\right)$, and $T \in \mathrm{~L}\left(Y^{* *}, Y\right)$ with the following properties:
(1) $X \in \mathrm{AP}, Y^{* *}$ has a basis;
(2) $J_{Y}=B A, J_{Y} T=B A T \in \mathrm{~N}\left(Y^{* *}, Y^{* *}\right)$;
(3) $T \in \mathrm{~N}^{\mathrm{reg}}\left(Y^{* *}, Y\right)$, but T is not in the closure of $Y^{* * *} \otimes Y$ in $\mathrm{N}^{\mathrm{reg}}\left(Y^{* *}, Y\right)$;
(4) $\left.A T \notin \mathrm{~N}\left(Y^{* *}, X\right)\right)$, but $A T$ is in the closure of $Y^{* * *} \otimes X$ in $\mathrm{N}^{\mathrm{reg}}\left(Y^{* *}, X\right)$.

Proof. With notation of Theorem 1 and its proof, for $\varepsilon=1$, let $Y=$ $\left(\sum_{n=1}^{\infty} Z\right)_{l_{2}}, X=\left(\sum_{n=1}^{\infty} W_{2^{n}}\right)_{l_{2}}, T=\bigoplus_{n=1}^{\infty}\left(n^{-2} t_{2^{n}}\right), A=\bigoplus_{n=1}^{\infty} i_{2^{n}}$ (here $i_{2^{n}}: Z \rightarrow W_{2^{n}}$ is the identity injection), $B=\bigoplus_{n=1}^{\infty} j_{2^{n}}$. Since $T\left(Y^{* *}\right) \subset Y$, our conditions (1)-(2) are fulfilled.

Furthermore,

$$
\left\|n^{-2} t_{2^{n}}\right\|_{\mathrm{N}\left(Z^{* *}, W_{2^{n}}\right)} \geq c n^{-2} 2^{n} \text { and }\left\|n^{-2} t_{2^{n}}\right\|_{\mathrm{N}^{\operatorname{reg}}\left(Z^{* *}, W_{2^{n}}\right)} \leq 2 n^{-2}
$$

(the last inequality follows from the fact that for the operators $t_{2^{n}}$ the norms in $\mathrm{N}^{\text {reg }}\left(Z^{* *}, W_{2^{n}}\right)$ and in $\mathrm{I}\left(Z^{* *}, W_{2^{n}}\right)$ are the same since the space $Z^{* * *}$ is separable, hence it possesses the Radon-Nikodým property (cf. [$\left.{ }^{2}\right]$, 24.6)).

Therefore $A T \notin \mathrm{~N}\left(Y^{* *}, X\right)$ but $A T \in \mathrm{~N}^{\mathrm{reg}}\left(Y^{* *}, X\right)$. Moreover, for each $n, t_{2^{n}} \in Z^{* * *} \widehat{\otimes} W_{2^{n}}=\mathrm{I}\left(Z^{* *}, W_{2^{n}}\right)$; hence $t_{2^{n}}$ is in the closure of $Z^{* * *} \otimes W_{2^{n}}$ in the space $\mathrm{I}\left(Z^{* *}, W_{2^{n}}\right)$ and consequently in the closure of the ball of the radius $\left\|t_{2^{n}}\right\|_{\left(Z^{* *}, W_{2^{n}}\right)} \leq$ 2 of the space $\left(Z^{* * *} \otimes W_{2^{n}},\|\cdot\|_{I\left(Z^{* *}, W_{2^{n}}\right)}\right)$ in the space $\mathrm{I}\left(Z^{* *}, W_{2^{n}}\right)$. Therefore $A T=A\left(\bigoplus_{n=1}^{\infty} n^{-2} t_{2^{n}}\right)$ belongs to the closure of $Y^{* * *} \otimes X$ in the space $\mathrm{N}^{\text {reg }}\left(Y^{* *}, X\right)=\mathrm{I}\left(Y^{* *}, X\right)$.

Finally, the property (3) is obvious since each operator t_{α} has the corresponding property.
Corollary 3. There exists a separable Banach space X with the AP, a constant $C>0$, a countable family $\left\{E_{n}\right\}$ of subspaces of X with $\operatorname{dim} E_{n}=n$ for each $n \in \mathbb{N}$ so that if $R \in X^{*} \otimes X$ and $\left.R\right|_{E_{n}}=\operatorname{id}_{E_{n}}$ for some fixed n, then $\|R\| \geq C \sqrt{n}$.

Proof. Let W_{n} and t_{n} be spaces and operators from Theorem 2. Write $E_{n}=t_{n}\left(W_{n}\right)$. If $R \in W_{n}^{*} \otimes W_{n}$ and $R \equiv \mathrm{id}_{E_{n}}$ on the subspace E_{n}, then \mid trace $R t_{n}|=|$ trace $t_{n} \mid=1$ and \mid trace $R t_{n} \mid \leq\|R\|\left\|t_{n}\right\|_{1\left(W_{n}, W_{n}\right)} \leq$ $\|R\| C / \sqrt{n}$. Hence $\|R\| \geq C^{-1} \sqrt{n}$. Now it is enough to put $X=$ $\left(\sum W_{n}\right)_{l_{2}}$.

Remark. The last corollary was announced in $\left[{ }^{6}\right]$, Theorem 1.6, and obtained by a different method in $\left[{ }^{7}\right]$, Corollary $3 .{ }^{1}$

[^0]Corollary 4. There is a constant $c>0$ with the following property. For each $n=1,2, \ldots$ there exist a separable Banach space W with a basis, a separable Banach space W_{n} with the BAP, an n-dimensional operator $t: W \rightarrow W_{n}$ such that
(i) $\forall U \in \mathrm{~L}\left(W_{n}, W\right) \quad \mid$ trace $U \circ t \mid \leq\|U\|$ and $\|t\|_{\wedge} \geq c \sqrt{n}$;
(ii) there exist $\varepsilon>0$ and an operator $V \in \mathrm{~L}\left(W_{n}, W^{* *}\right)$ with $\|V\| \leq 1$ such that if $E_{n}=t(W), F_{n}=t^{*}\left(W_{n}^{*}\right), R \in \mathrm{~L}\left(W_{n}, W\right)$ and $\left.{ }^{*}\right) \quad \forall e \in E_{n}, \forall f \in F_{n} \quad|\langle R e-V e, f\rangle| \leq \varepsilon\|e\|\|f\|$,
then $\|R\| \geq c \sqrt{n}$.
Proof. Let W, W_{n}, and t be as in Theorem 2. The space W has the MAP; so if $U \in \mathrm{~L}\left(W_{n}, W\right)$, then there exists a net $\left\{R_{\alpha}\right\}, R_{\alpha} \in W_{n}^{*} \otimes W$, tending to U in the topology of compact convergence and such that $\left\|R_{\alpha}\right\| \leq\|U\|$ for any α. Therefore, \mid trace $U \circ t\left|=\lim _{\alpha}\right|$ trace $R_{\alpha} \circ t \mid \leq\left\|R_{\alpha}\right\|\|t\|_{\mathrm{I}\left(W, W_{n}\right)} \leq$ $C\|U\|$.

To prove (i), it is enough to note that $\|t\|_{\wedge} \geq \sqrt{n}$.
To prove (ii), consider an operator $V \in \mathrm{~L}\left(W_{n}, W^{* *}\right)$ such that $\|V\| \leq 1$ and $\|t\|_{\wedge}=\mid$ trace $V \circ t \mid$. For $R \in \mathrm{~L}\left(W_{n}, W\right)$ we have \mid trace $R \circ t \mid \leq$ $C\|R\|$. If R satisfies (*), then \mid trace $R \circ t|\geq|$ trace $V \circ t|-|$ trace $(R-$ $V) \circ t \mid \geq\|t\|_{\wedge}-\varepsilon n\|t\|_{\wedge}$. Thus, for small enough ε one gets $\|R\| \geq$ $(1 / 2 C)\|t\|_{\wedge} \geq(1 / 2 C) \sqrt{n}$.

By using the method of proof of Corollary 4 (applying Theorem 1 instead of Theorem 2) and the summing method of the proof of Corollary 1, we obtain
Corollary 5. There exist separable Banach spaces W and X with the following properties:
(i) W has a basis, $W \in$ MAP, $X \in \mathrm{AP}$;
(ii) there is an operator $T \in \mathrm{~L}(W, X)$ such that for every operator $U: X \rightarrow W$ the composition UT lies in the projective tensor product $W^{*} \widehat{\otimes} W$ and \mid trace $U T \mid \leq\|U\|$ (i.e. $T \in \mathrm{~L}\left(X, W^{*}\right)$) but $T \notin W^{*} \widehat{\otimes} X$;
(iii) there exists an operator $V: X \rightarrow W^{* *}$ with the property that V is not in the closure in the space $\mathrm{L}\left(X, W^{* *}\right)$ for the topology of pointwise $X \times W^{*}$-convergence of any ball of the finite radius of the space $\mathrm{L}(X, W)$;
(iv) there exist $c>0$ and countablefamilies $\left\{E_{n}\right\}$ and $\left\{F_{n}\right\}$ of finitedimensional subspaces of X and W^{*}, respectively, $\operatorname{dim} E_{n}=\operatorname{dim} F_{n}=$ n, so that for each n if $R \in \mathrm{~L}(X, W)$ is such an operator that $\langle R e, f\rangle=$ $\langle V e, f\rangle$ for every $e \in E_{n}$ and $f \in F_{n}$, then $\|R\| \geq c \sqrt{n}$.
Remark. In $\left[{ }^{8}\right]$, Corollary 3.3 , it is proved that there exist a Banach space Z, an element $z \in Z^{*} \widehat{\otimes} Z$, and an operator $\Psi \in \mathrm{L}\left(Z, Z^{* *}\right)$ such that trace $\Psi \circ z=1$ but trace $\Phi \circ z=0$ for each $\Phi \in \mathrm{L}(Z, Z)$ (clearly, $Z \notin \mathrm{AP})$. An analogue of this assertion for the case when Z has the AP is the assertion (ii) of the above corollary. The corollary improves also in a sense Theorem 2.3 in [${ }^{9}$] where it is shown that there exists a continuous linear functional on the space of all weakly compact operators on a Banach space with the AP generated by a non-nuclear operator.

Corollary 6. There exist a (completely) separable Banach space $Z, Z \in$ AP , and an operator $S \in \mathrm{~L}\left(Z, Z^{* *}\right)$ such that if $\left\{R_{\alpha}\right\} \subset \mathrm{L}(Z, Z)$ and $R_{\alpha} \underset{\alpha}{\longrightarrow} S Z \times Z^{*}$-pointwise, then $\left\|R_{\alpha}\right\| \underset{\alpha}{\longrightarrow}+\infty$. On the other hand, it is clear that the set $Z^{*} \otimes Z$ of all finite-dimensional operators is dense in $\mathrm{L}\left(Z, Z^{* *}\right)$ in the topology of compact convergence.

Proof. Take $Z=W \oplus X$, where W and X are the spaces from Corollary 5 and define $S: Z \rightarrow Z^{* *}$ by $S(w, x)=(V x, 0)$, where V is from the assertions (iii)-(iv) of Corollary 5.

REFERENCES

1. Oja, E. et Reinov, O. I. Un contre-exemple à une affirmation de A. Grothendieck. C. R. Acad. Sci. Paris, Série I, 1987, 305, 121-122.
2. Pietsch, A. Operator Ideals. North-Holland, New-York, 1980.
3. Diestel, J. and Uhl, J. J. Jr. Vector Measures. Math. Surveys Monographs. Amer. Math. Soc., Providence, RI, 1977, 15.
4. Lindenstrauss, J. On James' paper "Separable Conjugate Spaces". Israel J. Math., 1971, 9, 279284.
5. Pisier, G. Counterexamples to a conjecture of Grothendieck. Acta Math., 1983, 151, 181-208.
6. Reinov, O. I. A Survey of Some Results in Connection with Grothendieck Approximation Property. Math. Nachr., 1984, 119, 257-264.
7. Reinov, O. I. A finite dimensional aspect of the existence of non-nuclear operators with nuclear adjoints. Reports of the Univ. of Stockholm. 1983, 12.
8. Reinov, O. I. Approksimatsiya operatorov v banakhovskykh prostranstvakh. In Primeneniye funktsional'nogo analiza v teorii priblizhenii. KGU, Kalinin, 1985, 128-142 (in Russian).
9. Reinov, O. I. How bad may be a Banach space with the approximation property? Mat. Zametki, 1983, 33, 6, 833-846 (in Russian).

MITTETUUMAOPERAATORITEST, MILLE KAASOPERAATORID ON TUUMAOPERAATORID

Oleg REINOV

On parendatud varem tõestatud lõplikumõõtmelise iseloomuga tulemusi, mis on seotud Banachi ruumide aproksimatsiooniomadustega. Muu hulgas on näidatud, et on olemas separaabel kaasne baasiga Banachi ruum W ja konstant $C>0$ nii, et iga $n \in \mathbb{N}$ korral leiduvad ekvivalentne norm $\|\cdot\|_{n}$ ruumil W ning n-mõõtmeline operaator $t_{n}: W \rightarrow W$ järgmiste omadustega: ruumil $W_{n}=\left(W,\|\cdot\|_{n}\right)$ on \sqrt{n}-meetriline aproksimatsiooniomadus (\sqrt{n}-MAP), kuid tal ei ole omadust $C^{-1} \sqrt{n}$-MAP; trace $t_{n}=1$; operaatori t_{n} norm Grothendiecki integraaloperaatorite ruu$\operatorname{mis} \mathrm{I}\left(W_{n}, W_{n}\right)$ pole suurem kui C / \sqrt{n}, tema norm ruumis $\mathrm{I}\left(W, W_{n}\right)$ pole suurem kui C ning tema norm tuumaoperaatorite ruumis $\mathrm{N}\left(W, W_{n}\right)$ pole väiksem kui $c \sqrt{n}$, kus $c>0$ on mingi absoluutne konstant.

[^0]: ${ }^{1}$ Taking an opportunity the author would like to point out that there was a mistake in the proof of Theorem 1.8 in $\left[{ }^{6}\right]$ (this is Theorem 4 in $\left[{ }^{7}\right]$). So the corresponding result remains unproved.

