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Abstract. The optimal control problem with state and control constraints, with bounded

measurable controls, and absolutely continuous trajectories is approximated by a sequence of

finite-dimensional problems. Using the notion of the discrete convergence of elements and

operators,conditions are presented that quarantee the discreteconvergence of trajectories and

the weak* discrete convergence of controls.
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1. INTRODUCTION AND PRELIMINARIES

Consider the following optimal control problem with state and control

constraints [']. Minimize

fHz,u) = / f(t, z(t), u(t))dt (1)

over the set of functions {(z(t), u(t))} satisfying the differential equation

$u ora DZn ern @

and the additional constraints to state and control

S(t,z(t)) < 0 for all t € [O,T], (3)

C(t,u(t)) < 0 for aa. t€[o,T], 4)

ult) € Uza for a.a. t € [O, 7, (5)
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where functions f(t,x,u) and g(7,x,u) are nonlinear in all variables

(t,z,u), f: RXxR xR™ - R, g: Rx R x R™ — R, states

z(t) are absolutely continuous functions, z € Wl[o, T'], controls u(t) are

essentially bounded measurable functions, u € L*[o,T], and a.a. is the

abbreviation of "almost all".

Historically, in the formulation of the maximum principle [?], the
authors assumed that the controls u(¢) were continuous (not necessarily
differentiable) functions, and then the maximum principle was generalized
to the case with measurable controls by using the Luzin’s C-property of

measurable functions. However, even the space of measurable functions

is general, it is too general for stability analysis of the problem (1)—(5)
since the space of measurable functions forms only a metric space. For

that reason, it is more convenient to look for optimality conditions when

controls u(t) belong to some Lebesgue space LP[O,T],l < p < 00, see,

e.g., [}]. But, in the case of nonlinear control problems there arise some

technical difficulties if controls u(t) belong to a Lebesgue space of the pth
summable functions L”[o,7T], 1 < p < 00. In these spaces the functional

(1) and the operator (2) that define the problem are not differentiable,
they are differentiable only in the space L°°[o,T] of essentially bounded
measurable functions. This is the reason, why authors consider nonlinear
control problems even with absolutely continuous trajectories, x €

Whl[o, T}, [*], or with Lipschitz continuous trajectories, z € WlH°[o, T7,
[°], and with essentially bounded measurable controls, u € L*°[o,T]. Even

more, it is known [®] that there exist linear time-optimal control problems
with constant coefficients and with a dimension greater than 2, for which
all optimal controls are almost everywhere discontinuous functions.

In the approximate solution of control problems they are usually
substituted with problems in finite dimensional subspaces, replacing
integrals by sums and the infinite number of constraints by finite ones.

Correctness of this replacement is usually guaranteed by systems of

projectors {P,} such that

Pu-ul— o,neEeN Vu, (6)

(e.g. by orthoprojectors in the Ritz-Galerkin method [*]).
This approximation scheme works well in LP-spaces, 1 < p < 00,

and results, generally speaking, from the fact that in Lebesgue spaces we

can approximate functions by polynomials with rational coefficients. But,
if controls belong to the space of essentially bounded measurable functions

L*>[o,T}, it is not clear, how to construct systems of subspaces and

projectors which could satisfy (6), since the space C|[o,T] of continuous
functions is not dense in L*°[o, T'].

One possibility to approximate nonlinear control problems in L™ is

to utilize the new concept of convergence, different from the projection
methods approach. This convergence was introduced to numerical analysis
by Stummel in [’] and is called now "discretization". The discretization

approach differs from the projection methods approach in that instead
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of the definition of a system of projectors {P,} which satisfy (6), only
the nondegeneracy of norms of projected elements is needed in order to

guarantee uniqueness of the limit process.

In Lebesgue LP-spaces, 1 < p < 00, we are forced to define the system
of linear connection operators @ = {q,}, ¢, : LP[O,T] — R", inthe

integral form:

(Qnu)in = At}
-

—/t u(t)dt
i-l,n

D

with o=g, < O - AAA = tin — til,n, 80 that

max; Atin, —& 0, ne N.

The connection system Q defined in such way satisfies the norm

consistency property:

@t Iln — || w Il n e N Vue LP[O,T], 1 <p < (8)

(here || - ||, denotes the /2-norm of a vector). For the Z?-spaces, 1 < p <

00, the proof of the convergence (8) relies on the fact that C[o, T'] is dense

in these spaces. For the space L*°[o, T'] the proof of the convergence (8) is

presented in [®].
The Q-convergence (or in other words — the discrete convergence) of

the sequence of vectors {u,} to the function u(t), u € L°[o, T], is defined

in the following way.

Definition 1. The sequence {u,} Q-converges to the function u €

L*>[o,T) if

Un — Inu In — 0, n e N. _ (9)

Remark 1. The consistencyproperty (8) guarantees the nondegeneracy of
norms ofdiscretized in R™, n € N, elements ofL*[o, T] and thus, the

uniqueness of the limitprocess (9).

Remark 2. For the trajectories x(t) we will use the simplest system of
connection operators P = {p,} from C[o,T] to R™:

(pnx)in = x(tin)) i= 17 My, N EN. (10)

Note that the connection system P is also applicable for the Riemann

integrable functions.
In this paper together with the Q-convergence of vectors we need also

their discrete weak* convergence.
Let z(t) be an integrable function, z € L![o, 7].

Definition 2. The sequence {u,} w*Q-converges to the function u €

L*>[o,T] if

n T

> (mnZ)in,Uin)Dlin — / (2(t),u(t))dt, n € N Vz € LO,T].
i=l 0
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Remark 3. The consistency property (8) holds also for any integrable
function z(t), z € L‘[o,T].

Note that the norm consistency condition (8) is weaker than the

convergence condition (6). For instance, in reflexive LP-spaces, 1 < p <

00, from the weak convergence of elements and from the convergence of

their norms there follows the strong (norm) convergence of elements (the
Radon—Riesz property).

The norm consistency condition between the space of essentially
bounded functions L*™ and the sequence of Euclidean spaces with an

increasing dimension was formulated and proved in [®] for a system of

linear piecewise integral connection operators, where the partition of a

bounded integration domain was realized using only the sets with the

measure zero of their boundary and only for continuous measures. Note

that for projectors P,, defined in such way, there may exist L*°-functions

for which the limit (6) does not exist (see, e.g., [°l).
Schemes for analysing the stability of the discrete approximation of

infinite dimensional extremum problems rely on the discrete analogues of

the existence theorems (see, e.g., [* I°]). Hence, we at first formulate a

theorem that gives us the existence of an optimal solution in C[o,T] X

L*>[o,T]. Due to technical reasons we cannot guarantee compactness in

x of the integral operator g(z,u) = fot g(s,z(s),u(s))ds in WHl[O, T] but

only in C[o, T'] for afixed u € U,q. Consequently, the convergence analysis
of trajectories is carried out in the space with weaker topology than the

topology of the space of absolute continuous functions.

Since the existence of solutions for differential equations are more

convenient to handle in their integral form, we will reformulate Eq. (2) as

an integral equation:

z(t) = /o 9(s,z(s),u(s))ds+zo, t € [O,T].

Assume that

(f.l) the function f(t,z,u) is Riemann integrable in ¢ for all (z,u),
continuously differentiable in (z,u) for a.a. ¢ and for all A > 0, and for

all |z |, |y |, | |< h there exist Riemann integrable functions ay(t),
azn(t) such that | f(¢t,z,u) | < an(t) and | f(t,z,,u) — f(t,y,u) | <
ag(t) | T -y |;

(f.2 the function f (¢, z, u) is Riemann integrable in ¢ for all (x, u) and

continuous in (z,u) for a.a. ¢t € [O, T], there exists a Riemann integrable
function asp(t) such that| f.(¢t,z,u) | < agu(t) forallh > 0, | z |,
|u| < hy

(g.l) the function g(s, x, u) is Riemann integrable in s for all (z,u),
continuously differentiable in (z,u) for a.a. ¢, and for all A > 0 and all

| = |, | u | there exists a Riemann integrable function b 1 (s) such that

l g(s,a:,u) I < blh(s);
(g.2 the functiong.(s, z,u) is Riemann integrable in s for all (z, u),

continuous in (z,u) for a.a. s € [O, T] and continuous in z uniformly in u,
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forallh > Oandall | x |, | w | < h there exists a Riemann integrable
function boy(s) such that | gL(s,z,u) | < bon(s);

(s.l) the function S(¢,z) is Riemann integrable in ¢ for all z and

continuous in ¢ for a.a. ¢ € [O, T;
(c.l) the functionC(t, u) is Riemann integrable in ¢ for all and convex

and continuously differentiable in u for a.a. t € [O, T).

Let us present now conditions that guarantee the existence of an optimal
solution of the problem (1)-(5).

Theorem 1.Let functions f(t,z,u), g(s,z,u), S(t, ), and C(t, u) satisfy
the conditions (f.l), (f.2 (g.l), (g.2 (s.l), (c.l). Let thefunction f(t, z,u)
be convex in u, the set U,q be bounded, convex and weakly* closed. Let

in a certain ball S(z,,r), ™ > 0, the linearized homogeneous equation

2(t) = [ g.(s,zu(s),u(s))z(s)ds have only the trivial solution z(t) =

o,t € FO,T]. Then optimal control and the trajectory (u,x) exist in

L*>[o,T] x C[O,T).

The proof of the theorem relies on the Banach fixed point theorem.

Using this theorem, we can show that the differential equation (2) (more

concretely, its integral equivalent z(t) = fot g(s, x(s), u(s))ds+xo) has for

a fixedcontrol u(t) the solution in C|[o, 7]. Then, relying on the Weierstrass
existence theorem, it is not difficult to present conditions which guarantee
the existence of optimal control and trajectories.

2. APPROXIMATION CONDITIONS

Denote for brevity sums f, (Tn,Un) = Y iy f(biny Tin, Uin) O tin and

gn(xm un) — z;:l g(sjm Ljn, ujn) A tjn-
Formulate the discretized problem. Minimize

z.f(tinaxinauin) A tin (11)
i=]ll

over the set of vectors {(z,, u,)} satisfying constraints

Tin =Y _ 9(Sjn,T
=

jn, an) A tjn +ZO i 1ny
—

5
s JIO

»1 (12)

and the additional constraints to state and control

S(tinawin) S O’ 1= ]-7 ... M, (13)

C(timuin) <0,:=1,..,n, (14)
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Uin € Upag, 1 =1,..., 1. (15)

In order to apply in approximation the existence theorem scheme, we

need conditions which guarantee the discrete approximation of the integral
equation (2) by the sequence of sums (12).

Proposition 1. Let thefunction g(s, z,u) satisfy conditions (g.l) and let

max; Nt;, —& o,n € N. Then

Dnglxz,u) — In(DnZ, qnu) In —& 0, n € N. (16)

Proof. Let maxı<i<n Atın —& o,n € N. Consider the difference:

png(:B, ’LL) - gn(pnxa qny) Hn
lin i

= lršl?š); | A g(s, :L‘(S), u(s))ds — jž—;g(sjna.'l?(Sjn), (qnu)jn) A tjn

The scheme of the proof is as follows. Take a continuous function u.(t),
uc € C[o, T] such that for a fixed trajectory z(t)

/0 | g(s,z(s),u(s)) — g(s,z(s),uc(s)) |ds < ž
Taking an index n; so large that for all n > nı we have

tin i
€

lrgaš ‘/0 9(s,z(s), uc.(s))ds — šg(sjn;x(sjn)auc(sjn)) A tjn‚ < 7

an index ny so large that for all n > n, we have

{2%)% , z; g(sjnv x(sj„), UC(SJ'”)) A tjn
]:

- zg(sjm x(sjn)a (qnuc)jn) A tjn SZa
j=l

and an index n 3 so large that for all n > n 3 we have

-

€

z lg(sjm s(Sjn), (qnu)jn) - g(sjn’ LU(SJ'„), (Qnuc)jn)‘ A tjn S Z,
j=l

the convergence (16) follows taking n > max{nı, n2, n3}. ®

Proposition 2. Let the function g(s,x,u) satisfy conditions (g.l), (g.2).
Let max; At;, — o,n € N. Thenfrom the weak* discrete convergence

ofdiscrete controls {u,} to the control u € L°[o, T] follows the strong
discrete convergence ofa subsequence ofoperators g,(%, u,), n € N" €

N' C N, to a continuousfunction y(t).
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Remark 4. Note thatfrom the last convergence does notfollow the norm

(strong) convergenceof {un} tou, n € N" (if, e.g., the operator g is linear

in u, then its inverse is not bounded — Eq. (2) is the first kind equation
relative to u).

Proposition 3. Let the function C(t,u) satisfy conditions (c.l). Then all

w*Q-limits u(t) of sequences of discrete controls {u,} that satisfy the

inequality (14) will satisfy also the inequality (4).

Approximate now the integral cost functional f(z,u) by the sequence

{fn(Zn, uy)} of finite dimensional sums from (11).

Proposition 4. Letfunction f(t, x,u) satisfy conditions (f.l), (f.2 and be

convex in u. Let max; Nt;, —0, n € N. Then

lim sup fn(xnyun) < f(:L‘,U)
as P—limz, = z, @—lim u, = u,

lim inf f,(zn,u,) > f(z,u)
as P—limz, = z, wO-lim u, =u.

Assume, relying on Theorem 1, that the initial and approximate
problems have optimal solutions (z*, u*) and (z7 u}), respectively.

Relying on Propositions 1-4, we can now together with Theorem 1

formulate the main result of the paper on the approximate solution of

nonlinear optimal control problems.

Theorem 2. Let functions f and g satisfy conditions (f.l), (f.2 (g.l),
(g.2 (s.l), (c.l). Let the nonempty set of admissible controls U,q
be convex, bounded, and weakly* closed in L™[o,T], and the function
f(t,z,u) be convex in u. Let max; \t;,; — o,n € N, and let

Unad © @uUa.q. Let the linearized homogeneous equation z(t) =

fot 9.(s, x*(s),u*(s))2(s)ds have only the trivial solution z(t) = 0. Then

) fr = f*, neN;
(2) a subsequence of discrete optimal trajectories {x}} P-converges

and a subsequence of discrete optimal controls {u*} w*Q-converges to

the optimal trajectory and control of the initial problem (1)—(5).

Remark 5. Due to the limited scope ofthe paper we cannot presentproofs
ofPropositions 2—4 and Theorems 1, 2. Technically they are quite lengthy
and sophisticated.

Corollary 1. Ifthefunction f(t, x,u) is strictly convex inu, then the whole

sequence of discrete optimal solutions {(zX,u*)} ofproblems (11)—(15)
PQ-converges to the optimal solution (z*,u*) of the initial problem (1)-
(5).
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KATKEVATE STRATEEGIATEGA OPTIMAALJUHTIMISE
ÜLESANNETE APROKSIMATSIOONIST

Riho LEPP

Mittelineaarne optimaaljuhtimise ülesanne absoluutselt pidevate tra-

jektooride ja oluliselt tõkestatud mõõtuvate juhtimistega on

lähendatud lõplikumõõtmeliste ülesannete jadaga. Tuginedes elementide

ja operaatorite diskreetse koonduvuse teooriale, on esitatud tingimused,
mis garanteerivad trajektooride diskreetse ja juhtimiste nõrga* diskreetse

koondumise.
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