ON A METHOD OF SOLVING A SMOOTHING PROBLEM

Natalia BUDKINA
Department of Mathematics, University of Latvia, Rainis Blvd 19, LV-1586 Riga, Latvia

Received 25 January 1996, accepted 4 June 1996
Abstract. In the paper a function is approximated by its values in grid knots measured with errors. The problem is equivalent to the minimization of a smoothing functional under inequality constraints in Sobolev spaces. Solving the problem is reduced to solving an auxiliary problem. It is proved that the solution of the auxiliary problem is a natural spline, which under certain conditions coincides with the solution of the initial problem.
Key words: natural spline, smoothing problem, smoothing parameters, auxiliary problem, connection equation.

1. INTRODUCTION

Let $\triangle_{n}: a \leq t_{1}<t_{2}<\ldots<t_{n} \leq b$ be a given partition of the interval $[a, b], n>2$, where the measurements z_{i} of a function g at the knots t_{i} of \triangle_{n} are known with some errors

$$
\left|g\left(t_{i}\right)-z_{i}\right| \leq \varepsilon_{i}, \quad i=1, \ldots, n .
$$

We are looking for the smoothest function, the values of which in the grid knots t_{i} differ from the given values z_{i} by no more than the values of errors $\varepsilon_{i} \geq 0, i=1, \ldots, n$.

Let $q \geq 1$ be a given natural number. Define two functionals: the smoothing functional

$$
J(f)=\int_{a}^{b}\left(f^{(q)}(t)\right)^{2} d t
$$

and the functional of deviation

$$
R_{i}(f)=\left(f\left(t_{i}\right)-z_{i}\right)^{2}, \quad i=1, \ldots, n .
$$

We formulate the problem

$$
\begin{align*}
J(f) \longrightarrow & \min \\
& f \in \mathbf{W}_{2}^{q}[a, b], \\
& R_{i}(f) \leq \varepsilon_{i}^{2}, \quad i=1, \ldots, n
\end{align*}
$$

where $\mathbf{W}_{2}^{q}[a, b]$ is the Sobolev space of functions f with $f^{(r)}$ absolutely continuous, $r<q$, and $f^{(q)} \in \mathbf{L}_{2}[a, b]$. This is a problem of conditional minimization of the smoothing functional in the Sobolev space with constraints of inequality type on the functional $R_{i}(f)$. In the present paper the existence and uniqueness of the solution of the problem $\left(1^{\prime}\right)-\left(2^{\prime}\right)$ will be discussed.

If $n \leq q$, then the solution of the problem $\left(1^{\prime}\right)-\left(2^{\prime}\right)$ is any polynomial P of degree ($q-1$), which satisfies the conditions $P\left(t_{i}\right)=z_{i}, i=1, \ldots, n$. Therefore in this case there exist infinitely many solutions of the problem (1^{\prime})-(2^{\prime}).

If $n>q$ and not any algebraic polynomial of degree $(q-1)$ satisfies the conditions $\left(2^{\prime}\right)$, then there exists a unique solution of the problem $\left(1^{\prime}\right)-$ $\left(2^{\prime}\right)$. This solution is the natural spline of degree $(2 q-1)$ and defect 1 , which satisfies the constraints $\left(2^{\prime}\right)$ and minimizes the functional $J(f)$ (see e.g. $\left[{ }^{1}\right]$).

A natural spline s of degree $(2 q-1)$ over the grid \triangle_{n} is a function which satisfies the conditions:

1. s is a polynomial of degree $(q-1)$ on each $\left[t_{i}, t_{i+1}\right], i=1, \ldots, n$;
2. $s \in \mathbf{C}^{2 q-2}[a, b]$;
3. $s^{(q)}(t) \equiv 0$, if $t \in\left[a, t_{1}\right] \cup\left[t_{n}, b\right]$.

A function s is a natural spline of degree $(2 q-1)$ over the grid \triangle_{n} if and only if it can be written as

$$
\begin{equation*}
s(t)=\sum_{j=0}^{q-1} a_{j} t^{j}+\sum_{j=1}^{n} b_{j}\left(t-t_{j}\right)_{+}^{2 q-1}, \tag{3}
\end{equation*}
$$

where the coefficients b_{j} satisfy the equalities

$$
\sum_{j=1}^{n} b_{j} t_{j}^{k}=0, \quad k=0, \ldots, q-1
$$

and

$$
\left(t-t_{j}\right)_{+}^{k}= \begin{cases}\left(t-t_{j}\right)^{k}, & t \geq t_{j} \\ 0, & t<t_{j}\end{cases}
$$

is the truncated power function.
If the spline s interpolates g in the sense $s\left(t_{i}\right)=g\left(t_{i}\right), \quad i=1, \ldots, n$, then it is called an interpolating spline for g. It is well known (see e.g. $\left[{ }^{1}\right]$) that the interpolating spline has the extremal property. This fact enables us
to define the interpolating spline as a solution to the interpolating problem - the problem $\left(1^{\prime}\right)-\left(2^{\prime}\right)$ in the case $R_{i}(f)=0, i=1, \ldots, n$, i.e. when $\varepsilon_{i}=0, i=1, \ldots, n$,

$$
\begin{aligned}
J(f) \longrightarrow & \min , \\
& f \in \mathbf{W}_{2}^{q}[a, b], \\
& f\left(t_{i}\right)=z_{i}, \quad i=1, \ldots, n .
\end{aligned}
$$

If there exist positive values among $\varepsilon_{i}, i=1, \ldots, n$, then the solution of $\left(1^{\prime}\right)-\left(2^{\prime}\right)$ is called a smoothing spline.

We denote $I=\{1, \ldots, n\}, I_{0}=\left\{i \in I \mid \varepsilon_{i}=0\right\}$ and $I_{1}=\left\{i \in I \mid \varepsilon_{i}>0\right\}$, i.e. $I=I_{0} \cup I_{1}$ (the sets I_{0} and I_{1} can be empty).

In that case we can rewrite $\left(1^{\prime}\right)-\left(2^{\prime}\right)$ in the form

$$
\begin{align*}
J(f) \longrightarrow & \min , \tag{1}\\
& f \in \mathbf{W}_{2}^{q}[a, b], \\
& R_{j}(f) \leq \varepsilon_{j}^{2}, j \in I_{1} ; \quad f\left(t_{j}\right)=z_{j}, j \in I_{0} . \tag{2}
\end{align*}
$$

Some algorithms for constructing the unknown smoothing spline are described in $\left[{ }^{2}\right]$ and $\left[{ }^{3}\right]$. But the convergence of the method of coordinatewise descent (see e.g. $\left[{ }^{2}\right]$) and of the fine method (see e.g. $\left[^{3,4}\right]$) has not been proved. Difficulties with computing the precise solution appear already in the case of a small degree ($q=1$ and $q=2$, i.e. when the solution is a spline of the first degree or a cubic spline, respectively). The main purpose of the present paper is to introduce a new algorithm for solving the problem (1)-(2).

2. AUXILIARY PROBLEM

Ignatov in $\left[{ }^{5}\right]$ reduced the problem (1^{\prime}) with constraint

$$
\sum_{i=1}^{n} R_{i}(f) \leq \varepsilon^{2}
$$

to an auxiliary problem of unconditional minimization. Following this idea, we propose to reduce the solution of (1)-(2) to the solution of the auxiliary problem

$$
\begin{align*}
F(f)=J(f)+\sum_{j \in I_{1}} \frac{1}{\alpha_{j}} R_{j}(f) \longrightarrow & \min , \tag{4}\\
& f \in \mathbf{W}_{2}^{q}[a, b], \tag{1}\\
& f\left(t_{j}\right)=z_{j}, \quad j \in I_{0},
\end{align*}
$$

where $\alpha_{j}>0, j \in I_{1}$ are the smoothing parameters.

Theorem 1. There exists a unique natural spline of degree $(2 q-1)$, which satisfies the conditions:

$$
\left\{\begin{align*}
&(-1)^{q}(2 q-1)!\alpha_{i} b_{i}+s_{\alpha}\left(t_{i}\right)=z_{i}, \tag{5}\\
& s_{\alpha}\left(t_{i}\right)=z_{i}, \\
& i \in I_{0},
\end{align*}\right.
$$

(for the definition b_{i} see (3)). It is the unique solution of the problem (4).
Proof. The proof of the theorem is based on the fact ($\left[{ }^{6}\right]$) that any spline s and any function $f \in \mathbf{W}_{2}^{q}[a, b]$ satisfies the equality

$$
\begin{equation*}
\int_{a}^{b} f^{(q)}(t) s^{(q)}(t) d t=(-1)^{q}(2 q-1)!\sum_{j=1}^{n} b_{j} f\left(t_{j}\right) \tag{6}
\end{equation*}
$$

Note that the spline s can be written as (3), where

$$
\sum_{j=1}^{n} b_{j} t_{j}^{k}=0, k=0, \ldots, q-1
$$

We shall show that the system

$$
\left\{\begin{align*}
(-1)^{q}(2 q-1)!\alpha_{i} b_{i}+s_{\alpha}\left(t_{i}\right) & =0, & & i \in I_{1} \tag{7}\\
s_{\alpha}\left(t_{i}\right) & =0, & & i \in I_{0}, \\
\sum_{j=1}^{n} b_{j} t_{j}^{k} & =0, & & k=0, \ldots, q-1
\end{align*}\right.
$$

has only a trivial solution.
Let the spline $s_{0_{\alpha}}$ be an arbitrary solution of (7). By (6) it follows that

$$
\int_{a}^{b}\left(s_{0_{\alpha}}^{(q)}(t)\right)^{2} d t=(-1)^{q}(2 q-1)!\sum_{j=1}^{n} b_{j} s_{0_{\alpha}}\left(t_{j}\right)
$$

Therefore $\int_{a}^{b}\left(s_{0_{\alpha}}^{(q)}(t)\right)^{2} d t=-((2 q-1)!)^{2} \sum_{j \in I_{1}} \alpha_{j} b_{j}^{2}$.
The inequalities $\int_{a}^{b}\left(s_{0_{\alpha}}^{(q)}(t)\right)^{2} d t \geq 0$ and $\alpha_{j}>0, j \in I_{1}$ imply that $b_{j}=0, j \in I_{1}$. We get the system

$$
\left\{\begin{aligned}
s_{0_{\alpha}}\left(t_{i}\right)=0, & i \in I_{0} \\
\sum_{j \in I_{0}} b_{j} t_{j}^{k}=0, & k=0, \ldots, q-1
\end{aligned}\right.
$$

This system corresponds to the interpolating problem, and hence the unique solution of it is the spline $s_{0_{\alpha}}(t) \equiv 0$. Thus we have proved that the solution of (7) is trivial, therefore the unique spline s_{α}^{*} which satisfies the condition (5) is

$$
\left\{\begin{aligned}
(-1)^{q}(2 q-1)!\alpha_{i} b_{i}+s_{\alpha}^{*}\left(t_{i}\right)=z_{i}, & & i \in I_{1}, \\
s_{\alpha}^{*}\left(t_{i}\right)=z_{i}, & & i \in I_{0} .
\end{aligned}\right.
$$

Next let us prove that s_{α}^{*} is the unique solution of the problem (4). Let $\left(s_{\alpha}^{*}+h\right)$ be another solution of (4), i.e.

$$
\left(s_{\alpha}^{*}+h\right)\left(t_{i}\right)=z_{i}, \quad i \in I_{0} .
$$

Here h is a function in $\mathbf{W}_{2}^{q}[a, b]$. Therefore $h\left(t_{i}\right)=0, i \in I_{0}$.
If we suppose that $h(t) \not \equiv 0$, then we get $F\left(s_{\alpha}^{*}+h\right)>F\left(s_{\alpha}^{*}\right)$, since

$$
\begin{aligned}
F\left(s_{\alpha}^{*}+h\right)- & F\left(s_{\alpha}^{*}\right) \\
= & \int_{a}^{b}\left(h^{(q)}(t)\right)^{2} d t+2 \int_{a}^{b} s_{\alpha}^{*(q)}(t) h^{(q)}(t) d t \\
& +\sum_{j \in I_{1}} \frac{1}{\alpha_{j}}\left(\left(\left(s_{\alpha}^{*}+h\right)\left(t_{j}\right)-z_{j}\right)^{2}-\left(s_{\alpha}^{*}\left(t_{j}\right)-z_{j}\right)^{2}\right) \\
= & \int_{a}^{b}\left(h^{(q)}(t)\right)^{2} d t+2(-1)^{q}(2 q-1)!\sum_{j=1}^{n} b_{j} h\left(t_{j}\right) \\
& +\sum_{j \in I 1} \frac{1}{\alpha_{j}}\left(2\left(s_{\alpha}^{*}\left(t_{j}\right)-z_{j}\right) h\left(t_{j}\right)+h^{2}\left(t_{j}\right)\right) \\
= & \int_{a}^{b}\left(h^{(q)}(t)\right)^{2} d t+2(-1)^{q}(2 q-1)!\sum_{j \in I_{1}} b_{j} h\left(t_{j}\right) \\
& +\sum_{j \in I_{1}} \frac{1}{\alpha_{j}}\left(2(-1)^{q+1}(2 q-1)!\alpha_{j} b_{j} h\left(t_{j}\right)+h^{2}\left(t_{j}\right)\right) \\
= & \int_{a}^{b}\left(h^{(q)}(t)\right)^{2} d t+\sum_{j \in I_{1}} \frac{1}{\alpha_{j}} h^{2}\left(t_{j}\right)>0 .
\end{aligned}
$$

This proves that the spline s_{α}^{*} is the unique function, which minimizes the functional $F(f)$.

It follows from Theorem 1 that the construction of the solution of the problem (4) can be reduced to the system of linear equations (6).

3. CONNECTION EQUATION

The main result of the present paper connects the solution of the problem (1)-(2) to the solution of the problem (4). We denote

$$
\begin{aligned}
\alpha & =\left(\alpha_{i} \mid i \in I_{1}\right) ; & \varepsilon^{2} & =\left(\varepsilon_{i}^{2} \mid i \in I_{1}\right) ; \\
\varphi_{i}(\alpha) & =R_{i}\left(s_{\alpha}\right)=\left(s_{\alpha}\left(t_{i}\right)-z_{i}\right)^{2}, & i \in I_{1} ; \quad \varphi(\alpha) & =\left(\varphi_{i}(\alpha) \mid i \in I_{1}\right),
\end{aligned}
$$

where s_{α} is the solution of the problem (4). We call the vector equality

$$
\begin{equation*}
\varphi(\alpha)=\varepsilon^{2} \tag{8}
\end{equation*}
$$

the connection equation. It connects the smoothing parameters α and ε of the problem (1)-(2) and (4).

Theorem 2. If the parameters α and ε are connected by Eq. (8), then the spline s_{α}, i.e. the solution of the problem (4), gives the unique solution of the problem (1)-(2).

Proof. Let f be the solution of (1)-(2). Note that the spline s_{α} satisfies also the conditions (2). Let us compare the values $J(f)$ and $J\left(s_{\alpha}\right)$.

Suppose $J(f) \leq J\left(s_{\alpha}\right)$. Then

$$
\begin{aligned}
F(f) & =J(f)+\sum_{j \in I_{1}} \frac{1}{\alpha_{j}} R_{j}(f) \leq J\left(s_{\alpha}\right)+\sum_{j \in I_{1}} \frac{1}{\alpha_{j}} \varepsilon_{j}^{2} \\
& =J\left(s_{\alpha}\right)+\sum_{j \in I_{1}} \frac{1}{\alpha_{j}}\left(s_{\alpha}\left(t_{i}\right)-z_{i}\right)^{2}=F\left(s_{\alpha}\right),
\end{aligned}
$$

i.e. $F(f) \leq F\left(s_{\alpha}\right)$.

By Theorem $1 s_{\alpha}$ is the unique solution of the problem (4), therefore $f \equiv s_{\alpha}$. If $f \not \equiv s_{\alpha}$, we get a contradiction. Thus $J(f)>J\left(s_{\alpha}\right)$.

4. CASE OF PARTIAL SMOOTHING

Consider the problem (1)-(2) in the case, where the values z_{i} of the function g are known exactly at all points t_{i}, except one point t_{m}.

$$
\begin{align*}
J(f) \longrightarrow & \min , \tag{0}\\
& f \in \mathbf{W}_{2}^{q}[a, b], \\
& R_{j}(f) \leq \varepsilon_{j}^{2}, j \in I, j \neq m ; f\left(t_{m}\right)=z_{m} \tag{0}
\end{align*}
$$

We shall call this case partial smoothing.
The auxiliary problem in this case will be the following

$$
\begin{aligned}
F(f)=J(f)+\frac{1}{\alpha_{m}} R_{m}(f) \longrightarrow & \min \\
& f \in \mathbf{W}_{2}^{q}[a, b], \\
& f\left(t_{j}\right)=z_{j}, \quad j \in I, j \neq m
\end{aligned}
$$

Without the last condition our problem $\left(1^{0}\right)-\left(2^{0}\right)$ becomes an interpolating problem. The solution of this problem \bar{s} is an interpolating spline for the vector $\bar{z}=\left(z_{j} \mid j \in I, j \neq m\right)$. Let us denote $\varepsilon_{m}^{*}=\left|\bar{s}\left(t_{m}\right)-z_{m}\right|$. This value ε_{m}^{*} will be called the critical value of the smoothing parameter ε.

The spline \bar{s} satisfies all the conditions of the problem $\left(1^{0}\right)-\left(2^{0}\right)$ in the case $\varepsilon_{m} \geq \varepsilon_{m}^{*}$, and thus the spline \bar{s} is the solution of this problem.

Consider the equation

$$
\begin{equation*}
\varphi_{m}\left(\alpha_{m}\right)=\varepsilon_{m}^{2} \tag{9}
\end{equation*}
$$

in the case $0<\varepsilon_{m}<\varepsilon_{m}^{*}$.

Theorem 3. The function $\varphi_{m}\left(\alpha_{m}\right)$ is continuously differentiable, strictly increasing, and

$$
\lim _{\alpha_{m} \rightarrow 0} \varphi_{m}\left(\alpha_{m}\right)=0, \lim _{\alpha_{m} \rightarrow \infty} \varphi_{m}\left(\alpha_{m}\right)=\left(\varepsilon_{m}^{*}\right)^{2} .
$$

Proof. The spline s_{α} can be written as (3). Its coefficients $a_{0}, a_{1}, \ldots, a_{q-1}$ and $b_{1}, b_{2}, \ldots, b_{n}$ depend on α_{m}.

In our case

$$
\varphi_{m}\left(\alpha_{m}\right)=\left(s_{\alpha}\left(t_{m}\right)-z_{m}\right)^{2}=((2 q-1)!)^{2} \alpha_{m}^{2} b_{m}^{2}\left(\alpha_{m}\right)
$$

If we prove that the coefficients are continuously differentiable, then we prove that the spline s_{α}, and hence the function $\varphi_{m}\left(\alpha_{m}\right)$ are continuously differentiable. The coefficients of the spline will be continuously differentiable as the solution of the following system of the algebraic equations

$$
\left\{\begin{array}{rl}
(-1)^{q}(2 q-1)!\alpha_{m} b_{m}\left(\alpha_{m}\right) & +\sum_{j=0}^{q-1} a_{j}\left(\alpha_{m}\right) t_{m}^{j} \\
& +\sum_{j=1}^{n} b_{j}\left(\alpha_{m}\right)\left(t_{m}-t_{j}\right)_{+}^{2 q-1}=z_{m} \\
& \sum_{j=0}^{q-1} a_{j}\left(\alpha_{m}\right) t_{i}^{j}+ \\
+\sum_{j=1}^{n} b_{j}\left(\alpha_{m}\right)\left(t_{i}-t_{j}\right)_{+}^{2 q-1}=z_{i} \\
i=1, \ldots, m-1, m+1, \ldots, n \tag{10}
\end{array},\right.
$$

Let us differentiate the function $\varphi_{m}\left(\alpha_{m}\right)$,

$$
\frac{\partial \varphi_{m}\left(\alpha_{m}\right)}{\partial \alpha_{m}}=2\left(s_{\alpha}\left(t_{m}\right)-z_{m}\right) \frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right) .
$$

By differentiating (3), we obtain

$$
\frac{\partial s_{\alpha}}{\partial \alpha_{m}}(t)=\sum_{j=0}^{q-1} \frac{\partial a_{j}\left(\alpha_{m}\right)}{\partial \alpha_{m}} t^{j}+\sum_{j=1}^{n} \frac{\partial b_{j}\left(\alpha_{m}\right)}{\partial \alpha_{m}}\left(t-t_{j}\right)_{+}^{2 q-1}
$$

where

$$
\sum_{j=1}^{n} \frac{\partial b_{j}\left(\alpha_{m}\right)}{\partial \alpha_{m}} t_{j}^{k}=0, \quad k=0, \ldots, q-1
$$

Thus $\frac{\partial s_{\alpha}}{\partial \alpha_{m}}(t)$ is a natural spline. By (6) it follows that

$$
\begin{equation*}
\int_{a}^{b}\left(\frac{\partial^{q+1} s_{\alpha}}{\partial \alpha_{m} \partial t^{q}}(t)\right)^{2} d t=(-1)^{q}(2 q-1)!\sum_{j=1}^{n} \frac{\partial b_{j}\left(\alpha_{m}\right)}{\partial \alpha_{m}} \frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{j}\right) \tag{11}
\end{equation*}
$$

In order to obtain $\frac{\partial b_{j}\left(\alpha_{m}\right)}{\partial \alpha_{m}}$, let us differentiate each equation of the system (10).

$$
\left\{\begin{aligned}
&(-1)^{q}(2 q-1)!\alpha_{m} \frac{\partial b_{m}\left(\alpha_{m}\right)}{\partial \alpha_{m}}+(-1)^{q}(2 q-1)!b_{m}\left(\alpha_{m}\right) \\
&+\frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right)=0 \\
& \frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{i}\right)= 0, \\
& \quad i=1, \ldots, m-1, m+1, \ldots, n ; \\
& \sum_{j=1}^{n} \frac{\partial b_{j}\left(\alpha_{m}\right)}{\partial \alpha_{m}} t_{j}^{k}= 0, \quad k=0, \ldots, q-1 .
\end{aligned}\right.
$$

Therefore, taking into account (12),

$$
\begin{aligned}
\int_{a}^{b} & \left(\frac{\partial^{q+1} s_{\alpha}}{\partial \alpha_{m} \partial t^{q}}(t)\right)^{2} d t=(-1)^{q}(2 q-1)!\frac{\partial b_{m}\left(\alpha_{m}\right)}{\partial \alpha_{m}} \frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right) \\
& =\frac{1}{\alpha_{m}}\left(-\frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right)-(-1)^{q}(2 q-1)!b_{m}\right) \times \frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right) \\
& =\frac{1}{\alpha_{m}}\left(-\left(\frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right)\right)^{2}-(-1)^{q}(2 q-1)!b_{m} \frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right)\right) .
\end{aligned}
$$

By the first equation of (10) we have

$$
(-1)^{q}(2 q-1)!b_{m}=-\frac{1}{\alpha_{m}}\left(s_{\alpha}\left(t_{m}\right)-z_{m}\right)
$$

Hence

$$
\begin{aligned}
& \int_{a}^{b}\left(\frac{\partial^{q+1} s_{\alpha}}{\partial \alpha_{m} \partial t^{q}}(t)\right)^{2} d t \\
& \quad=\frac{1}{\alpha_{m}}\left(-\left(\frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right)\right)^{2}+\frac{1}{\alpha_{m}}\left(s_{\alpha}\left(t_{m}\right)-z_{m}\right) \frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right)\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
\frac{\partial \varphi_{m}\left(\alpha_{m}\right)}{\partial \alpha_{m}} & =2\left(s_{\alpha}\left(t_{m}\right)-z_{m}\right) \frac{\partial s_{\alpha}\left(t_{m}\right)}{\partial \alpha_{m}} \\
& =2 \alpha_{m}^{2} \int_{a}^{b}\left(\frac{\partial^{q+1} s_{\alpha}}{\partial \alpha_{m} \partial t^{q}}(t)\right)^{2} d t+2 \alpha_{m}\left(\frac{\partial s_{\alpha}}{\partial \alpha_{m}}\left(t_{m}\right)\right)^{2}
\end{aligned}
$$

We see that $\frac{\partial \varphi_{m}\left(\alpha_{m}\right)}{\partial \alpha_{m}}>0$, so the function $\varphi_{m}\left(\alpha_{m}\right)$ is strictly increasing on the interval $(0,+\infty)$.

If $\alpha_{m} \rightarrow 0$, then from the first equation of (10) we get

$$
\lim _{\alpha_{m} \rightarrow 0} s_{\alpha}\left(t_{m}\right)=z_{m},
$$

and the solution of this system converges to the interpolating spline for the vector $z=\left(z_{1}, \ldots, z_{n}\right)$. Hence

$$
\lim _{\alpha_{m} \rightarrow 0} \varphi_{m}\left(\alpha_{m}\right)=0
$$

If $\alpha_{m} \rightarrow \infty$, then the problem tends to the interpolating problem, which has the solution \bar{s}. Therefore

$$
\lim _{\alpha_{m} \rightarrow \infty} \varphi_{m}\left(\alpha_{m}\right)=\left(\varepsilon_{m}^{*}\right)^{2}
$$

Corollary 4. For $\varepsilon_{m} \in\left(0, \varepsilon_{m}^{*}\right)$ Eq. (9) has a unique solution.

REFERENCES

1. Laurent, P. J. Approximation et optimization. Hermann, Paris, 1972.
2. Vershinin, V. V., Zav'yalov, Yu. S., and Pavlov, N. N. Ekstremal Properties of Splines and the Smoothing Problem. Nauka, Novosibirsk, 1988 (in Russian).
3. Pavlov, N. N. Smoothing by cubic splines and the penalty method. Vychisl. Sistemy, 1983, 98, 92-102 (in Russian).
4. Pavlov, N. N. Smoothing splines of first degree. Vychisl. Sistemy, 1985, 108, 31-36 (in Russian).
5. Ignatov, M. I. A Metod of Construction of Smoothing Splines of One Variable. Preprint AN SSSR, Ural'skoe otdelenie, Syktyvkar, 1988 (in Russian).
6. Malozemov, V. N. and Pevnyj, A. B. Polinomial Splines. Leningrad Univ., Leningrad, 1986 (in Russian).

ÜHEST LÄHTEANDMETE SILUMISE ÜLESANDE LAHENDUSMEETODIST

Natalia BUDKINA

On vaadeldud ülesannet, kus funktsiooni lähendatakse tema väärtuste järgi sõlmedes, kusjuures need väärtused on antud mõningase veaga. Selline ülesanne on siledusfunktsionaali tingliku minimeerimise ülesanne Sobolevi ruumis võrratuste tüüpi kitsendustega. Püstitatud ülesande lahendamine on taandatud abiülesande lahendamisele ja tõestatud, et abiülesande lahendiks on naturaalne splain, mis teatud tingimustel langeb kokku esialgse ülesande lahendiga.

