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Abstract. Semiparallel submanifolds M”” inEuclidean spaces E™ are the second-order envelopes
(SOE) of symmetric orbits, i.e. complete submanifolds with VA = 0_(with a parallel second

fundamental formh), and are characterized by the integrabilitycondition R o h = 0 of the system

Vh = 0. The SOE of the reducible symmetric orbits, each of which is a product ofa Segre orbit

S(p,p)(T) and a straight line £ I (cylindrical type) or a circle S1(R) (toroidal type), are investigated
and geometrically described as the special immersed fibre bundles with Segre or sphere fibres.
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1. INTRODUCTION

Let M™ be a smooth submanifold in the Euclidean space E™, h

its second fundamental form, and V its van der Waerden—Bortolotti

connection, i.e. the pair of the Levi-Civita connection V and normal

connection V4. If VA = 0, then M™ is said to be parallel [?]. A

complete parallel M™ is a symmetric orbit in E™, an orbit of a Lie group

acting by isometries of E™, and symmetric with respect to every its normal

subspace [*]. It is shown [*] that a M™ in E™ is a symmetric orbit if and

only if M™ is a product of a Euclidean subspace and some irreducible

components, each of which is a standardly embedded symmetric R-space.
A submanifold M™ in E™ is said to be semiparallel [s_] (or semi-

symmetric extrinsically [* 7]), if the integrability condition R o h=o
of the system Vh = 0, where Ris the curvature operator of V, is

satisfied. A M™ in E™ is semiparallel if and only if M™ is a second-
order envelope of the symmetric orbits, i.e. for every point x €M™ there

is a symmetric orbit through z having at z the same tangent subspace and

the same second fundamental form h as M™(see [®]). The problem is to

describe all these envelopes. This is done for some low dimensions and
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codimensions [° ? 191 and for all normally flat semiparallel submanifolds

[7> 1, 121, The latter are the second-order envelopes of the symmetric orbits

with flat V-1, which are the products E™ x S™i(r{) X - -+ x S™s(r,) of a

plane and some spheres (incl. circles) [!].
The general symmetric orbits in E™ are according to [* 4] analogous

products, only instead of multidimensional spheres there can be more

general standardly embedded symmetric R-spaces N (r,) with m, >

1,0 € {1,...,5}. Thusasemiparallel submanifold M™in E™ is a second-

order envelope of the products E™ X N™i(r{)x - - - XN™s (1) X S(1441)X
e X S 1(’1"s+q); here N™¢(r,) are called the main components.
The cases when my = g = O and s = 1 (i.e. there is only one

main component and no others) are discussed in [l4~B]. The starting point
is the case when N™!(r;) = S™!(r;); thus the second-order envelope
M™ consists of umbilical points only and is therefore an open part of

a sphere. There are some other N™!(r;) which have the same property:
every second-order envelope of symmetric orbits, congruent or similar to

N™l(ry), is an open part of a single N™!(ry), e.g. Segre orbits without

circular generators [!4 13], Pliicker orbits [!®], Veronese—Grassmann orbits

['7> 18]. Such kind of N™!(r;) are further said to be umbilical-like. There
exist also non-umbilical-like N™!(r;), e.g. Segre orbits with circular

generators [!*], Veronese orbits ['" 14]. For them the situation is as by
circles S!(r): every curve M! in E™ is a second-order envelope of its

curvature circles.

Only some first steps have been made to study the semiparallel
submanifolds M™ in E™, which are the second-order envelopes of

symmetric orbits with at least two components as products, including a

main component. In [!!] the case is considered when s = I,q = 0, and

N™l(ry) is a Veronese orbit V™!(r;). There is shown that a second-order

envelope of the products E™ x V™(ry) in E™ is a product E™ x

M™+l where M™*! is a second-order envelope of E! x V™ () (i.e.
of cylinders on Veronese orbits).

In the present paper the main component N™!(r;) is assumed to be a

Segre orbit S, 5)(r). Two cases are considered: eithermo=l,s=l,¢=o
ormg =O, s=l, ¢= 1. The corresponding second-order envelopes
of either E' X Sy, s(r) or S 5 (r) x S'(R) are called the semiparallel
submanifolds of cylindrical or toroidal Segre type, respectively. Here

Sw,p(r) is the image of the Segre map SP(,/r) x SP(y/r) —> ED

determined by (u®,u%) — egzu*u*, where a € {0,1,...,p},a €

{p+l,...,p+7D}, X(u®)? = (u®? = r and the vectors e,z form an

orthonormal basis forE™, n = (p+1)(®+1) (see [°]). This S¢p 5(r) can be
characterized as a complete (p+p)-dimensional submanifold, lying fully in

ahypersphere S™~!(r) and having two families of generating great spheres
of S™~1(r) of dimensions p and 7 (determined by u® = const and u® =

const, respectively), which are totally orthogonal at every their intersection

point. Every S,5)(7) is a symmetric orbit and irreducible except S1)(7)
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which is a product of two circles. Moreover, S¢,5(r) withp > 1,0 > 1 is

umbilical-like, but S(; 5)(r) is non-umbilical-like ['4].
The main results of the present investigation are as follows.

Theorem 1. Ifp > landp > 1, then a second-order envelope of
E' x S()by variable T is an open part ofa cone inE®*D®+l which

has a point vertex and one-dimensional straight generators, intersecting
orthogonally the Segre orbits S,3)(T) (as directors).

Theorem 2. If p > 1 andp > 1, then a second-order envelope of
Sw.s() X S'(R) by variable r and R is an open part ofa special warped
cone with Segre directorsin E™,n > (p+ 1)(p+ 1), i.e. ofa fibre bundle

over a basic curve immersed into E™ so that

(1) the fibres are Segre orbits S, 5)(T) in parallel (p + 1)(D + 1)-
dimensional subspaces,

(i1 the centres ofthese orbits lie on the basic curve whose affine span is

totally orthogonal to these parallel subspaces,
(iii) the radius 7 is a linearfunction ofthe arc length parameter of the

basic curve.

The point, where 7 = 0, is the vertex of this warped cone. There exists

also the limit case when the vertex has moved away to infinity and 7 = r

becomes a constant. For Theorem 1 it means that the cone tends to the

cylinder E'! xS,(r), but the warped cone in Theorem 2 tends to a warped
cylinder S, (1) X M.

If p=landp > 1, the situation is more complicated. This is caused by
the fact that S; 5)(r) is non-umbilical-like, as shown in [l4l.

Theorem 3. A second-order envelope ofE' x Sap(7) is either

(i) an open part ofa product M?*!' x E!, where MP*! is a second-order

envelope ofSegre orbits Sa 3)(r); here MP*! is either(1) a single Sa z(r)
or (2) is generated in E*P*V) by concentric p-dimensional spheres with

variable T, whose orthogonal trajectories are the congruent logarithmic
spirals with a common pole at the centre of these spheres, or

(ii) an openpart ofa cone CP*? with a point vertex z in E*P*2 consisting
ofa one-parameterfamily of(D+ 1)-dimensionalround cones with a vertex

z, whose axes belong to a plane angular domain D and vertex angles x

vary according to

sin? y = sin® xo — cos? xo - tan? ı, (1.1)

where 1) is the angle between the axis and bisectrixofD, 0< s Xo=

const; a hypersphere SP*3 around z with a radius X\~ intersects the cone

CP*2 along a (p+ 1)-dimensional submanifold generated byp-dimensional
spheres, whose orthogonal trajectories lie in three-dimensional great

spheres of S?P*3 and have with respect to the latter the curvature X cos Xg :

(sinx)~! and the torsion —)\, whereas the arc length parameter s is

determined by sin As = cot x tan 1.
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In both cases the second-order envelope exists with arbitrariness of

constants; in the cases (i, 2) and (ii) it is a semiparallel but nonparallel
submanifold. In the case (ii) if Y — +xo, I.e. 1f the axis tends to the side of

D, one has x — 0; it means that the round cone contracts to this side and

the curvature of the orthogonal trajectory increases to infinity producing
two poles (asymptotic points) of the trajectory. The case (i, 2) is the limit

case when z moves away to infinity, D contracts to a straight line, and the

orthogonal trajectories tend to the plane logarithmic spirals.

Theorem 4. A second-order envelope MP* ofSapr) xSR) is either

(i) a partofaproduct MP*' x M inE™, n > 2(p+l), where MP*! is as

in Theorem 3 andM is an arbitrary curve inE*~*®*V _totally orthogonal
to the subspace E*P*D ofthis MP*! or

(ii) a part of a sphere bundle, immersed into E™, whose base is a

developable surface M?, the p-dimensional fibre spheres have theircentres

on M? and their (p+l)-dimensional subspaces are totally orthogonal to the

osculating subspace ofM>.

In both cases (i) and (ii) this envelope MP*? in E™ exists with the

arbitrariness of functions of one real argument; in general it is a semi-

parallel but nonparallel submanifold.
It is difficult to give a more detailed general geometric description of

MP*2 in the case (ii). There are some particular subcases where such a

characterization can be given. Two of them are described in Section 4;
the results are formulated in Propositions 5 and 6. In the first subcase the

basic surface M? of MP*? is a plane domain, in the second subcase M? is

a domain on a cylinder.

2. PROOFS OF THEOREMS 1 AND 2

The orthonormal frame bundle adapted to a Sy,5)(r) in E®@*D@*D i
the sense of [!°], can be adapted further so that the firstp basic vectors e,

are tangent to generating p-dimensional great spheres of S(p 5)(T), the next

D vectors ez are tangent to the other great spheres, and the point with the

radius vectorx +e, is the common centre of these great spheres, where
z is the radius vector of a point x € S, 5)(r) and m = p +p. (Here and

further the points are identified with their radius vectors.)
Then in the well-known derivation formulae

dr=erw!', de; = ejwy, wi +wh =0

for a frame {z;e;} € O(E™) and in the structure equations (as their

integrability conditions)

dw! = A dwi =wE Awi; I,J,K €{1,...,n},
wherenow n = (p+ I)@+ 1) = m + 1 + pp, there hold

w’m,+l — wTrF — O,

R a wXt a ET C WEr u
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here o = r7! and 77 etc. are the shortened denotations of the pair-indices
(m, ) of the other pp frame vectors, normal toS‘z)(r), together with e4l.

The equations of the second row follow from the fact that great spheres are

geodesic and totally umbilic (details see in [l]).
Let M™*! in E™ be a second-order envelope of S,s(r) x M, where

m=p+p,n > (p+1)(?+ 1) + 1, and M! is either a circle S$(R) ora

straight line £.

This M™*! is an integral submanifold of the Pfaff system

w — ATyw =O, (2.1)

w™ = o™, Wi = o™, (here p=77l), W =O, (2.2)

wIT =62 ow, wZ™ =6T ow”, Wi’ =O, (2.3)

w 2 =O, w 2 =O, w? = kw!”, (2.4)

wé =O, ws =O, wY. =O, (2.5)

where 1* = (p+1)(+ 1) + 1 and 2* = (p+ 1)(p+ 1) + 2 refer to the unit

tangent and normal vectors e« and ez« of S'(R)and ¢ € {2*+1,...,n}
to the other normal vectors of M™*!,

In the case M! = S!(R) here k = R7! / 0, but M'! = E! corresponds
to k = 0; in the last case ¢ can be replaced by (’ € {2*,2* +1,... ,n}.

This Pfaff system is to be investigated by the method of differential

prolongation [*% 2!] using exterior differentiation and Cartan lemma. If

p > l andp > 1, Egs. (2.5) lead to

1”
2.6)wW . =who =O, kwš„. = BSw!". (m+l NO

Indeed, e.g.

w’r/\wfn+l +Zw5/\wffi=o,
7

afi/\wfn+l +Zw”AwšF=O
g

give for every two different values of 7 and 7 the first two Eqs. (2.6).

The eguations w? = 0 yield

wA*
9 .

thus, in particular,

Wi = Aw? — rku”wl*, (2.8)

wf.: =" — rkvTw!. (2.9)

The eguations w2" = 0 together with 72" = 0 give now

(2.10)1*
.

rAkw+
_w3tT

- 0,Wr

Substituting all this into (2.7), one obtains: (1) for k= O the identity, (2)

forp > 1, k # O the relations u° =v7= 0; thus from (2.8) and (2.9) for
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both these cases

o
- F

Wl = Aw?, wis = AwW". (2.11)

The equation w}. = kw!” yields

dk = xwl* (2.12)

The equations w”+! = ow" and w+! = ow7 together give

dlno=-Mo", U (2.13)

Finally the equations wZ™ = 62 ow™ and w2” = 6ZOw7 imply

OO Wr =Wo W= Wp W= 0 (o#nm,THY).

(2.14)

This finishes the first differential prolongation.
The second differential prolongation deals with the additional equations.

Due to the extended system, almost all of them give identities by exterior

differentiation. Exceptional are the equations

kws. = B°w!”, dk=xw", (2.15)

DE NE E(26)

The first Eq. (2.16) yields d\ A w!™ = 0, thus d)\ = yw!. From the next

two groups of Egs. (2.16) now

D NO (2.17)

This is one of the results of second prolongation. All Egs. (2.16) give
now by exterior differentation identities, as well the new additional Eq.
(2.17).

If k = oon M™*!, then 2* = (p+ 1)(p +2) +2 can be considered as the

first value of ¢ € {(p+ I)@+ 1) +2,...,n}, Egs. (2.15) disappear and

the whole extended system is completely integrable. It follows that in this

case the considered M™*! exists with the arbitrariness of some constants.

Let k #oon M™*, IfBCeC = 0, then Eqgs. (2.15) reduce to

wS. =O, dk = zw!”, (2.18)

The first equations give identities, the second one gives dxAw!” = 0, which
is the only essential covariant equation of the whole extended system.
Due to the Cartan theory, this shows that in this case M™*! exists with

arbitrariness of one real function of one real argument.
Let k # 0 and BSe; # 0 on M™*!. Then (2.15) give dBS A w'™ = 0,

dxAw!” = 0, and M™*! exists with arbitrariness of q + 1 real functions of
one real argument, where ¢ is the numberof linear independent differentials

among dß¢; here, of course, g<n—(p+D@EP+l)-2.
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It remains to interpret the results geometrically. They show that

dz = e, w™ +exw” +eprw!
,

(2.19)

der = esw? — N6ı WT + oem” HOC® (2.20)

der = NCA, (2.21)

dej» = Merw" + ezw"*) + keg*wl*, (2.22)

WE CE rk)\ez*wl*, (2.23)

derz = —o(exw? +ezw™) + e,@wgier (2.24)

Since dw™ = W AwT+Aw! Aw™, dw™ = WAwE+Aw! Aw™, and dw!” =O,

the Pfaff systemsw™ = 0, w!” = oand w™ = 0, w"” = 0 are both completely
integrable on M™*!, For integral submanifolds of the first system one has

dzr=erw", der=ecsw?+(—2Xel +oem+)w",

so each of them is totally umbilic and thus a S?(7) or its part, where 7 =

A2+ 0%~1. Similarly every integral submanifold of the second system is

a SP(T) or its part. Both these spheres, SP(7) and SP(7), through a given
point z € M™*! are totally orthogonal in M™*! and have the same centre

y with the radius vector y = x + r€,,41, Where

Em+l = T(—Ael»x + OCm+l) (2.25)

is the unit vector along the radius of this SP(7). It follows that every integral
submanifold of the Pfaff equation w!" = oon M™*! is a Segre orbit

Sp(T) or its part.
Let k =0 on M™*! ie. let a second-order envelope M™*! of products

Ses(r) x E! be considered. Then w?, = oand 2* = (p+ 1) + 1) +2
can be included into the set {(p+ 1)(B+1)+2, ... ,n} of values of ¢’. This

shows that de,, des, and de;- have zero components in the subspace of e¢,
as well as de,,+; and de,z. Thus M™*! lies in a E@+D@D+l - g

For the integral lines of the system w™ = w™ = 0 on M™*! one has

1*
—dr=epw

,
dep=o,

therefore these lines are straight lines. If A # 0 on M™*!, then all of

them go through a fixed point z with the radius vector z = x — A7!'e‚«,
because dz = 0. Hence M™*! is a part of a cone with the vertex z and

one-dimensional generators. This cone consists of Segre orbits S,5)(T)
intersecting the generators orthogonally.

The proof of Theorem 1 is finished.

If A = oon M™*!, all straight lines above are mutually parallel, all Segre
orbits are congruent due to o = const and M™*! is a product S 5)(7) xE'

or its part.
To prove Theorem 2, let k 40 on Mm+l je. let a second-order envelope

M™* of products S,5)(r) x S'(R) be considered, r = p~!, R=k~!. To
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the derivation formulae (2.19)-(2.24) now

de» = [—-k(eı +TrAem+l) + k_lßCeC]wl*
must be added. |

Let move arbitrarily along M™*!. For y = x + Tem+l one has

dy = ore,«w!
where e1» = T(0e1» + Aem+l) is a unit vector, orthogonal to €,,4;. This

shows that the centres y of the Segre orbits S,5)(7), whose one-parameter

family generates the considered M™*!, m = p + P, form a curve with

the unit tangent vectore;- at y and with the arc length parameter s, whose

differential is d5 = pFw!. This curve is called the basic curve for M™*!

and M™*! can be considered as (a part of) a Segre orbits bundle on this

curve.

Since d 7 = A\Fw!’, the function 7 on the basic curve has the derivative

dr : ds = \ : p, which is a constant because d(A : ) = 0. Thus 7is a linear

function on the basic curve.

Moreover, the fibre orbit S,7(7) lies in a E®*DP*D| whose vector

space is spanned on e, e, Em+l, Exz. Due to (2.20), (2.21), (2.24), and

demEFE

which follows easily from (2.25), this vector space is invariant for M™*l,

Thus all fibre orbits S,5)(r) lie in parallel (p + 1)(p + 1)-dimensional
subspaces of E™, totally orthogonal to the subspace of the basic curve.

Hence M™*! can be considered as a "warped cone" of fibre orbitsS,7)(7),
whose "axis" is the basic curve and "vertex" is the singular point, where
r =O.

This finishes the proof of Theorem 2.
If A —0, here 7 — r = const, Em+l — €m+l, €l+ — €l, and for the

limit case, when A = 0, this M™*! is an ordinary product of S,z(r) and
the basic curve.

3. PROOF OF THEOREMS 3 AND 4

Ifp = 1, the effect which gives (2.6) does not workany more and instead
of (2.6) one obtains

wfn„ = ASw!, wlca = A°w7, kwš„ = B*w", (3.1)

but (2.8) and (2.9) are tobe replaced by

w}* SN rkuwl*, wf..a S (3.2)

and (2.10) by

wal =TpwT, Wi = r(pw! — Akw"'). (3.3)

Substitution into (2.7) givesnow rp =u, v 7 = 0 and thus

EAT = pw”, W l — BA (3.4)
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Instead of (2.12) and (2.13), one obtains

dk = -rk*'uw' + xwl*, (3.5)

dlno=vw'-Xo", Wit =y, (3.6)

also k 7 = 0 follows from w?, = kw!™ afterprolongation.
Finally, (2.14) are replaced by

WE WE (3.7)

and this finishes the first differential prolongation.
The second differential prolongation gives from (3.6) and (3.7)

dv = (+v9w! - Mv + rk‚u)wl*, (3.8)

d\ = X — rkuv)w!”, N (3.9)

and from (3.4)

: dp = Mrkv — p)w' +ASw2. (3.10)

Finally, (3.1) and (3.5) yield

doe =lk [z ASBS — u(3x+ kd) — rkz)\u] W, GB.11)

C
-

*

dAS
= A'wS — XA°w!” + ywS., (3.12)

dß* = --Bwš + rk(kXAS — 2uß)w! — zws. +C°w'", (3.13)

and this finishes the second differential prolongation
The next prolongation gives from (3.10)

)\Acwä* Aw! =O, (3.14)

but from (3.8) and (3.9) identities.

To obtain the geometric description, one has to investigate the derivation

formulae which follow from the results above:

dx = ew! +ezwT+ 61*601*‚

GE SC — (Xw' — 'r'k,uwl*)el* + o(emnw' +eFwT),

de= = vejw™ + e;w; —deprw” + Q(em+lwF + elel)v

der = Qw' — rhpw' ey + Aerw™+ kegew!,

demsl = —p(elw! + exw™) — veFw — (uw' — rkdw! ey + eCACwI,

derz = —o(elw™ + exw') + Vemuw™ + el7wF — pew" + eCACw?,

de»» = —kep-w' + (pw! — rkAw! Yemst + perFw”+ ecwg‚„.
For the coefficients in right-hand sides the relations (3.8)—(3.11) hold.

Since dw! = Aw!" A w!, dw™ = —vw! A W™ +wWTAWE4+ 2wY A wY,
dw!” = rkuw! A w!”, the system w! = w!” = 0 is completely integrable.
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For its integral submanifolds one has

™ T

Tdr = ezw™, der=erwi+(vej — Aei + 08m+1)W",

so each of them is a SP(F) or its part, 7 = (2 + A 2 + p)~2, whose centre y
has the radius vector y = = + 7€,,41, Where

Em+l = T(vel — Ael* + oem+l)

is the unit vector along the radius of this SP(7).
All centres of these spheres constitute a submanifold, whose tangent

subspace is spanned on

dy = d(x + Tem+l)-

After some calculations by means of (3.6), (3.8), (3.9) one finds that

dr = -Fvw' - Aw"), (3.15)

d€m+l = —F_lefw?+ lewl,
where €] = T(— 061 +Vem+l — Le2+ + A°ec) is a unit vector (due to (3.9)),

orthogonal to €,,,1. Now

dy E FEA
where

fi = F[Meı + ver+) — olwe2+ — A’ec)], (3.16)

fix = T[(v°7 + 01» + Mvei + oem+l)]. (3.17)

Since (fi, fi+) S'D S A ESV + ¢*)7%, the Gramian of fi
and fi= is A2p?7*. Thus f; and f;~ are linearly independent if and only if

AD
The systemw” = Ois also completely integrable and determines a family

of two-dimensional surfaces in the considered envelope MP*?, intersecting
orthogonally the p-dimensional spheres above. Each of these surfaces is
a second-order envelope of products of two circles and thus has a flat

normal connection V- (and also a flat Levi-Civita connection V, i.e. a

zero Gaussian curvature). Hence this surface has a net of curvature lines,
enveloped by these circles and going in the directions of e; and e;-.

Let A = 0 on MP*2. Then (3.9) yields p = 0, A° = 0 and (3.8), (3.13),
(3.11) give, respectively,

d —
2 1 C—

* *

v=v‘w, dB ——B"wg—xwä‚.+CCwl, daa

Since wll* = w%* = w':r:+l = wll; = wl2* = w%* = W727;+1 = wIC = wg = wan =

wlc? = 0, the considered submanifold MP*? is a product of its submanifold

MP*!, determined by w!” = 0, and its line in the direction of e;~, which is

orthogonal to MP+!.

If k = 0 on MP*2 this line is a straight line, because then de;» = 0.

If k 40 on MP*?, this line is a second-order envelope of the components
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SU(R) of products Sa»A)x S I(R) (i.e. these components are its curvature

circles).
In both cases MP*! lies in a E?P*2 and is a second-order envelope of

Segre orbits S5)(T), 7 = 0~ I, The assertion in Theorem 3, (i), concerning
its geometric description, can be verified as follows.

Since w!” = Oyields dlnp = vw', dv = v*w', here g is, in general, a

nonconstant function on MP*!, Now dw'! = 0 and w! can be considered as

the differential ds of the arc length parameter s of the orthogonal trajectory
of p-dimensional spheres in MP*!, Then dv = v*ds gives v = —s~! and

thus o = as~!, a = const, g being the curvature of this trajectory. Hence the
latter is a logarithmic spiral.

By differentiation one can see that y = x +7e€,,,1 is a constant vector for
MP*!

|
50 all p-dimensional spheres of MP*! have a common centre. Each

their orthogonal trajectory, as a logarithmic spiral, has its pole in this centre

(for details see [l4]).
The argumentation above shows also that A = 0 is the criterion which

characterizes the case (i) of both Theorem 3 and Theorem 4.

Proofof Theorem 3, (i1 Let A # 0, k = 0. Now (3.5) and the last equation
(3.1) imply BS = s = 0. If to consider 2* as the first value of (’, as above,
the remaining Eqs. (3.1) and the last two groups of (3.4) can be joined into

¢! —AC/(.U-G—,w!
Wig =

c =A% w
,wm+l -

where 42° = —u. The vector Aee = —-pej»» + ASee cannot be zero

because vu = AS = 0 and (3.9) give a contradiction to \ 7 0. Therefore e2»

can be taken so that AS =O, then (3.9) and (3.12) imply A= u 0 and

wy. = 0. As a consequence MP*2 lies in a 2072 whose vector space is

spanned on the vectors ey, ex, €l+, €m+l, €l7, €2*-
The vectors f; and fi« given by (3.16) and (3.17) are linearly

independent and thus the centres of the integral spheres SP(7) of the system
w! =w =0 belong to a two-dimensional surface, called the basic surface.

The orthogonal unit vectors

f0 = TOel +velx — ge2+), f} = T(0e1 +AXem+l +Ve2»*)

can be introduced and then

f = A 1 fir = 7007 + ofl).
A direct calculation shows that df? = 0, df?-- = 0, thus the basic surface is

a plane or its part.
gu

The orthogonal surfaces of all spheres SP(7) on MP*? are integral
surfaces of the system w”™ = 0 and each of them has curvature lines in the

direction of e}. These lines are enveloped by the straight line components

of Sq5(r) x E'. For them w! = 0 and thus dz = eiW ,de = 0

(due to k = 0). If follows that these curvature lines are straight lines.

Each of them has a point z with the radius vector z = £ — A~
'e;»,

and

since dA = —\2w!", de;» = Mdxz — e1«w!") on MP*?, for this point
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dz = 0. Thus the point z is a fixed point on all these straight lines. Here

Y—2 = Temsl A Ter = P2AT[M(ve; — Alel+ +oem+l) +(v*+X*+o°)el«] =

ATWY + of?+) = A71771 fl., hence this point lies on the basic plane.
These considerations show thatMP*2 is an open part of a cone CP*? and

the latter consists of round cones CP*!, which have a common vertex z and

whose axes belong to the basic plane.
A point y on one of these axes is determined, with respect to the

orthonormal frame {z; f?, f2l}, by the coordinates (A\=lv, A\=lp), as is

seen from the last relations.

There is a possibility to give the local explicit expressions for the

invariants v and p. Since dOw!) =dAAw! +AB wll* = (dA +

Mw!)Aw! = 0, at least locally Aw! = dip. Here X and p can be considered

as some local parameters on each integral surface of the system w™ = 0.

Now dv = (A 2 + v)A"dy + vA~ld), due to (3.8); thus dln(vA7!) =

(A% + v)Av~Idyp and there exists ®(p) such that vA™! = S(v), while

®' = (1 + ®2). The origin of ¢ can be taken so that ® = tan ¢, hence

v = Atan. Further, dlngp = vw! — Aw!” =tanp - dp + A~ldX and so

dIn(A~!p) = —dln(cos ¢); consequently A~!pcos ¢ = ¢ = const # 0 and

OCOS Y = CA.
A better geometric meaning of these results can be obtained considering

CP*? as a sphere bundle over the basic plane (as a warped product). The

bundle projection maps every orthogonal surface considered above onto

this basic plane and every straight line on it with w! = 0 (or, identically,
with ¢ = const) onto an axis. The direction of this axis is determined by the

vectorA(y —2) =7! fi= = vfY+ ofPL, thus its declination from the basic

vector f? is determined by the angle v with sin® ¢ = ‚—}2’l—292 = si—:i“;——%;, so

sin® ¢ = c? tan? ı.
For the radius F = (v? + A\ + 0?)~2 of the fibre sphere SP(7) now

2 _1- c? tan® 1

A2(l+c2) °
thus tan? ı < c”?; if tan? w = c7?, then 7 = 0. This shows that the axis

belongs to a closed angular domain D whose vertex is z. For the vertex

angle x of the cone

1 — e* tan*y2— 5232
sin“xy =FA = »—X

1 + c 2
and for its maximal value xo there holds sin” xo = (1 + c?)7!, thus c* =

cot? xo. This proves (1.1).
The intersection of CP*? with the hypersphere S?P*3 around z is

determined by w!™ = 0; this implies A = const on this intersection, A~

being the radius of S?P*3. The intersection is generated by p-dimensional
spheres as integral submanifolds of w! = 0 (the "parallels" of the round

cones CP*!), whose orthogonal trajectories are the integral lines of w™ = 0.
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For each of these lines

dr = ejw!, de; = (—Aeps + DE

demıl = -(0e1 +2Xe>)w', de»» = Aem+lw'.
Here el= ‚= .A(z — z),but eı ,em+l and e 2« are, respectively, the, tangent,
spherical principal normal, and binormal unit vectors of this line. Thus, its

spherical curvature and torsion are o = cA(cos ©)~! = Acosxo(sin x)!
and —\. The arc length parameter s is determined by w! = ds and one can

take ¢ = As, so sin As = cot xp - tan 1.
This finishes the proof of the assertion (ii) of Theorem 3.

In addition to the remarks after this theorem, it can be noted that the

centres of the generating spheres of the intersection lie on a perpendicular
to the bisectrix of D. This follows from

dy=7 [ff(/\wl + le*) + fl()i(gwl*)]

Proof of Theorem 4, (ii). Let A # o,k # 0; let fl =7 2fy, fl* = 72 flx,
where f; and f,- are given by (3.16) and (3.17). The straightforward
computations by means of (3.8)—(3.10) show that

df; = fl (z/wl — 2)\wl*) +fl=— (rkuwl*) ,

d]?l* = ]A”i (/\cul — rk‚uwl*) +fl=— (21/w1) + knl*wl*,

where nj» = p(— 061 +Vem+l +ASec)+(7—2)—p)ez». Here < f1+,71» >=

0, but < fl, Nni >= —?“zg‚u; the normal vector to the basic surface is

therefore
_

ı+ = nı +IA 20pf
and

dfi-— = Ä[Äwl — ku ('r + )\_29) wl*] + fl*(ZVwI) e KTr

For integral lines of the Pfaff equation w!” = 0 on the basic surface one

obtains

dy= fiPw'), dfi = fiwh), dfie = HOWH + fi=(2uw'),

thus these lines are straight lines and the tangent plane of the basic surface

M? is invariant along each of these lines. Hence the basic surface M? is

a developable one. Its osculating subspace at y is spanned on fl, f1», and

ni~.

The (p+l)-dimensional subspace of the fibre sphere SP(7) has the vector

space spanned on e and €,,,1. Since fi, fi+, and n;- are orthogonal to

these vectors, this subspace is totally orthogonal to the osculating subspace
of M?2. It finishes the proof of the assertion (ii) of Theorem 4.
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4. SOME COMPLEMENTARY CONSIDERATIONS

In some particular subcases the envelopes MP*? of Theorem 4, (ii)
deserve special attention.

Let ASe; = 0 on M 7 Then due to (3.1), (3.9), and 3.12) A = p $
0, BS = 0. The same expression for dy holds as in the proof of Theorem 3,

(i1 but now the calculations show that

Q ELE
thus the basic surface M? is a plane like above. Now, for the integral lines

of the system w™ = w! = 0, i.e. for the curvature lines of the orthogonal
surfaces, enveloped by the circle components S'(R) of Sap xSY(R), there

hold dz = e;»w!™, dej» = k(ey» —rAey)w!. The curvature vector of a line

is here k(e2« — rlep), thus the curvature is kry/0% + A2. On the tangent
of this line there exists a point z with the radius vector z = x — A~lejs
and, as before, y — z = A™l7~! fl.. So, z is the point at which this tangent
intersects the basic plane. For the whole MP+?

dz = ET
thus z describesan invariant curve on the basic plane, called the basic curve

of this MP*2,

By the bundle projection of MP*2 onto the basic plane the curvature

lines with w™ = w! = 0 map onto the curves with w! = 0. For the

latter dy = 7 (vfY + of?L) w!” = ffw!". The other curvature lines of the

orthogonal surfaces are determined by w™ = 0, w!” = 0; for each of them

there is a fixed point z on the basic curve. By the bundle projection they
map onto the lines of the basic plane, for which dy = 7vflw!, df? = 0, i.e.
which are straight lines, parallel to the tangent of the basic curve at this z.

The result can be formulated as follows.

Proposition 5. There exists a special case ofMP*? in Theorem 4, (ii), when

(a) the base is a plane domain with a fixed basic curve on it,

(b) the tangents of the curvature lines ofone family on MP*? generate
the cones with vertices on the basic curve, and

(c) the curvature lines of the otherfamily go by bundle projection into

straight lines, parallel to the tangents of the basic curve.

The other subcase worth investigation is characterized by A # o,k #
0, =O. From (3.9) it follows that then > (A4%)?> =A?# 0; taking e-

in the direction of ASe; # 0, one obtains A>* = A # 0,4% = 0,(; €

{2@+1)+4,...,n}, and due to (3.1), (3.10), (3.12)

- K
D

A A - 3*
—

1
W3x =O, Wp =AW, Wz=W, Wi 505 =O, W» =rkvw' ,

thus B} = rk?v. If the vector B'ee, is nonzero, eq can be taken in its

direction and so B 2 =O, (, € {2(@+1)+5,...,n} is obtained. This
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implies, due to (3.1), wi. = k~'Bw!”, wšž =O, where B = B*Y. The

same holds if BC‘eCI = 0, only then here B = 0. From (3.8), (3.9), (3.11) it

follows that

D O 2 AD dA=-Xw", (4.1)

but (3.16), (3.17) yield

h =A7f7, fie = FW7 + o), (4.2)

where 5 = (X2 + 72 + 02)72, as above, and now

0 _ ~ OL —

f =Toei +e +083), f = T(oelx + Aem+l — Ve3»)

are orthogonal unit vectors. A direct calculation shows that dflo = 0,

df9+ = rki~2ey-w!”; at the same time

dey = (—rki'f +e4+k7!'B)w!

Consequently, the basic surface M? is now a cylinder with generators in the

direction of f7, corresponding to the curves determined by w!” = w™ = 0

on MP*2.

The curves on MP*2, enveloped by the circle components S'(R) of

Sa,»F) x S'(R), are determined by w! = w™ = 0 and go in the direction of

el~. Each of these curves has on its tangent the point z with the radius vector

z = z—\"leq« lying on the tangent plane of M?at the corresponding point
y with the radius vector y = = + 7€,,,1, because y — 2 = Femsl + A" legx =

2—!fl+- The last vector is tangent to the curve on the basic cylinder M?,
corresponding to the curve with w! = w” = 0 on MP*?; this follows from

dy = fiw'+fl-w". This curve on M?intersects the generator of M? under
the angle ), which is the angle between f; and f1», and thus due to (4.2)

2
v

cos2 1) =

.Vi +0

From(3.6) and (4.1) it follows that 1) =const along this curve (where, recall,
w! = 0), thus the curve has the constant slope on the cylinder M2. The

situation is similar to that in the final part of the proof of Theorem 3, (ii),
only instead of the plane angular domain D one has now this kind of domain

on the cylinder M?2. Here also d(Aw!) = 0 and the further integration goes

analogically.
The result can be formulated as follows.

Proposition 6. There exists a special case ofMP*? in Theorem 4, (ii), when

the base is a domain on a cylinder, which can be bent onto a plane angular
domain D, and MP*? can be described similarly as in Theorem3, (ii), only
the right cones and their axes are to be replaced by warped cones and the

curves with a constant slope on the basic cylinder, respectively.
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SILINDRILIST VOI TOROIDAALSET TÜÜPI
SEMIPARALLEELSED ALAMMUUTKONNAD

Ulo LUMISTE

On uuritud selliseid semiparalleelseid alammuutkondi M” eukleidilis-

tes ruumides E™, mis on teist järku mähkijateks Segre orbiitide Sip,z(r)
korrutistele sirgega E! (silindriline tüüp) vöi ringjoonega S!(R) (toroi-
daalne tüüp). On antud niisuguste alammuutkondade M” geomeetriline
kirjeldus spetsiaalsete sisestatud kihtkonnaruumidena, mille kihtideks on

Segre orbiidid vöi sfäärid.
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