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Abstract. We propose the ternary generalization of the classical anticommutativity and study
the algebras whose generators are ternary anticommutative. The integral over an algebra with

an arbitrary number of generators N is defined and the formula of a change of variables is

proved. In analogy with the fermion integral we define an analogue of the Pfaffian for a cubic

matrix by means of a Gaussian type integral and calculate its explicit form in the case of

N =3.
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1. INTRODUCTION

If A is an algebra with the composition law (a,b) — a -b, then its

composition law is said to be anticommutative if a> = O,Va € A. The

best known examples of an algebra with anticommutative multiplication
are provided by Lie algebras. The first natural generalization of anti-

commutative multiplication is to increase the number of arguments, i.e. to

consider the algebras whose composition law involves n elements keeping
the order of nilpotency the same. This generalization was studied by
Mal’tsev ['] and his collaborators in the 19605.

Another possible generalization is to increase the order of nilpotency,
which is the main concern of this paper. It is obvious thatthis generalization
requires algebras with at least ternary composition law. Thus, if 7 is an

algebra with the ternary multiplication (a,b,c) — a-b-c € T, then we

shall call its multiplication ternary anticommutative if a 3 = 0, Va € T.
Then from the identities (a + b)® = 0 and (a + b + ¢)® = 0, where a, b, c

are arbitrary elements of the algebra 7, it follows immediately that

a-b-c+b-cca+c-a-b+c-b-at+a-c-b+b-a-c=o
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The left-hand side of the above identity suggests to introduceby analogy
with the classical anticommutativity the ternary anticommutator

{al‚ 2, as} = Z Ag(1)
*

Ao(2)
*

Ao(3)- (D
TES3

If a, b, c are the elements of some ternary algebra, then we shall call them

ternary anticommutative elements if {a, b, c} = 0.

In this paper we study the algebras whose generators are ternary
anticommutative. These algebras may be viewed as the analogues of

Grassmann algebra. Therefore we use the term ternary Grassmann

algebra (TGA) for them. Since classical Grassmann algebras have

played an essential role in supersymmetric field theories, there have been

made attempts to apply TGAs in field theories. The TGA with ternary
defining relations is used in [%] to construct the operators which are

more fundamental than the operators of supersymmetry. The algebra
with one ternary anticommutative generator is used in [3] to construct

the Z3-graded quantum space and in [ °] to generalize the algebras of

supersymmetries. Therefore we hope that other ternary structures, such as

ternary generalizations of Clifford and Lie algebras, will give rise to field

theories with new kinds of symmetries.

2. TERNARY GRASSMANN ALGEBRAS

We begin this section with the general definition of the ternary
Grassmann algebra (TGA). An associative algebra over the field C

generated by 6,,0,,...,0y is called TGA if its generators satisfy the

following condition of ternary anticommutativity:

{04,08,0c} =O, VA,8,C=1,...,N. (2)

Since each classical Grassmann algebra is a TGA, we define proper ternary
Grassmann algebra (PTGA) as the TGA whose generators satisfy the

additional condition 6% # 0, VA=1,...,N.
The generators of any TGA are cubic nilpotent, i.e. 85 = 0, VA =

1,...,N. This property follows from (2) when A = B = C. PTGA can

be endowed with the Z3-grading defined as follows: each generator 04 has

grade 1 and the grade of any monomial equals its degree with respect to

generators 64 modulo 3.

We get the simplest example of PTGA when N = 1. This algebra is

a three-dimensional vector space over the field C and it is spanned by the
monomials 1,8, 2, where 6 is the generator. This algebra was used in [3]
to construct the Z3-graded quantum space.

In order to have an explicit construction of PTGA when N > 1, one

ought to find the defining commutation relations which are consistent with

(2). In this paper we shall describe two ways of solving the condition (2)
of ternary anticommutativity.
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2.1. Ternary Grassmann algebra with binary relations

Let us assume some binary commutation relations between the

generators 61,
...,

0y of PTGA. Let these binary relations be of the form

0408 = qap 0804,

where g 4 p are complex numberssuch that g 4 # 0 for each pair of indices

(A, B). It is clear that gap = Ifor A = B, since 65 # 0 and gap =

qp4. Putting these binary commutation relations into the condition (2), one

obtains

14 qgpa+9cß+9caqßa+ 9caqc + dcß9caqpa = 0. (3)

If B=C, B # A, then the above condition takes on the form

2
:O,17 GB +pa

which clearly shows that g4p is the cube root of a unit. Here we have a

choice between j and j?, where j = e’3* Let us choose gap = J for

A > Band gup = j% for A < B. It is obvious that the other choice leads

just to the same structure. Now we are able to define the PTGA with binary
relations between its generators. This algebra is an associative algebra over

the field C generated by 64, ..., 0y which are subjected to the following
commutation relations:

040 = gap 0804, 03 =O, 4)

where

l, A=B

qAß={j‚ A>B. (5)
32, A<B

Let us denote this PTGA with binary relations by G¥ . In order to make the

structure of the algebra GI more transparent, we shall use generators with

conjugate indices defined as §; = 6%. From commutation relations (4) it

follows then

0405 =ozo4 =O, 0,05 = qap 0504, Ozos = daß OBOa, Üž =O. (6)

It is helpful to introduce notations for the classical Grassmann algebra
which are similar to the Kostant ones. Let N = {1,2,..., N} and J =

(Al, Ag, ..., Ax) be a subset of N. We associate two monomials, 0, and

67, to each subset J C N defining them as follows:

05 =04,04,...04,, 9J=9ÄI9Ä2---9Äk- (7)

If J = (, then as usual 0g = 1. Then the algebra GF is a vector space over

C spanned by the monomials 0,0 g such that JN K = (). Thus an arbitrary
element f(0) of GF can be expressed as

fo)= X drn (8)
JNK=9
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where &,g are complex numbers.

The number of subsets J C A consisting of k elements is C%,.. Since
the subset K C N matches J if J N K = 0), it is obvious that K ¢ N\J
and the number of such subsets is 2V, Thus the total dimension of G¥ is

SN, Ck 2N=k — 3N The highest-degree monomial of the algebra GJ is

the monomial 6505 . .. 05 = 60202 ...6%.
If we write an arbitrary element f(6) in the form f(6) = a + O(0),

where O(#) stands for the terms each containing at least one generator 64,
then it can be shown that there exists the inverse element f~1(6) if and only
if o#0.

2.2. Ternary Grassmann algebra with ternary relations

Another way to solve the conditions of ternary anticommutativity (2)
is to assume some ternary commutation relations between generators 64.
Since the cyclic subgroup Z; of the group S; has the representation
by cube roots of a unit, it seems natural by analogy with the ordinary
anticommutativity to construct ternary commutation relations by means

of the action of the cyclic group Z 3 on the indices of the corresponding
variables. This idea was first proposed by Kerner [?] and in this subsection

we briefly describe the structure of the corresponding TGA. A more

detailed description of the TGA with ternary relations and its applications
can be found in [* ].

The PTGA with ternary commutation relations is an associative algebra
over the field C generated by 6,65, ...,0x which are subjected to the

following ternary defining relations:

04050 c = 700c04. (9)

Let us denote the PTGA with ternary relations by G}. The above ternary
defining relations (9) are based on the idea of the action of the cyclic group

Zj3 in the sense that each cyclic permutation of the indices in the product
6465 ¢ is accompanied by the multiplication by the cube root of a unit

according to the representation of Z;. It is obvious that the generators of

GX satisfy the conditions (2) of ternary anticommutativity.
It should be noted here that there are no relations between the binary

products 405 of generators of G¥, i.e. they are linearly independent
entities. The immediate corollary from the above definition is that any

product of four or more generators must vanish. Here is the proof:

(04050¢)0p = 708(0c040p) = 7°(05040p)0c
— 0,4(0p050) = 10405956

Now, as (1 —j) # 0, one must have 040p0c0p = 0. Thus the

monomials 64 6% are the highest-degree monomials of the algebra Gy .

The

dimension of the PTGA with ternary relations is N(N + 1)(N +2)/3+l
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because we have N generators, N? independent products of two generators,
N(N — 1) independent ternary expressions with two generators equal and

one different, and N(N — 1)(N — 2)/3 ternary products with all the three

generators different; finally, the numbers give an extra dimension. Any
cube of a generator is equal to zero; the odd permutation of factors in a

product of three leads to an independent quantity.

3. INTEGRATION

The aim of this section is to define the derivatives and integral over the

PTGA generated by an arbitrary number of generators N. We shall also

establish and prove the formula of a change of variables in the integral over

TGA. Though the definitions of derivatives and integrals are just the same

in both cases of gg’ and g„—,—'Y‚ we shall always assume in this section that we

are considering the algebra GJ.

3.1. Derivatives and integral

Using the notations of Subsection 2.1, we define the derivatives with

respect to generators 84 by the following set of rules:

ÖA(ÜB) = õAB, ÖA(ÖB) =(1 +j2) Ö4BOB. (10)

The derivatives with respect to squares of generators 0z = 0% may also be
defined as follows:

Oz(0p)=0, Oz(os)=d4p. (11)

It is easy to establish the relation between these derivatives and the second-
order derivatives

81 = (I+7) A.

Clearly each derivative 04 is an operator of grade 2 and each derivative Öz
is an operator of grade 1. A straightforward computation shows that the

derivatives satisfy the following commutation relations:

05 =O, 0007=0704=0, 0408 =quposoa,

0405 = GapoOp 04, oios = qaposoz, 05=0.
From the above formulae it follows that derivatives Öl, Öz are ternary anti-

commutative, i.e.

{ÖA7ÖB)ÖC} :07 {ÖÄ)öß’öÖ} :0

An integral over the PTGA, generated by one generator, was defined

and studied in [?]. We extend the definition given there to the PTGA with N
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generators and prove the formula of a change of variables. The integral of
an arbitrary element f(0) © GF with respect to 0 is defined by the formula

[ 404 £(6) = 04(£(6)). (12)

As usual, the multiple integral is tobe understood as the repeated integral.
Note that integration with respect to all generators in the case of the

PTGA with ternary relations G} is always trivial since the highest-degree
monomials have the form 040%. Integration with respect to all generators
in the case of the PTGA with binary relations GN yields the coefficient at

the highest-degree monomial. Thus

[ D 9 f(0) = aın (13)

where DO = df; df,. ..dOy and a 5 is the coefficient at the monomial

0105 ...05.
Let ¥1,7,,...,09x5 be another system of generators of the algebra

GY and generators 0,0, ...,
0y expressed in terms of ¥;,,,...,0y as

follows:
N

04 = Z &4B UB + OA(0), (14)
B=l

where 04(60) denotes terms containing more than one generator and the

determinant of the matrix A = (auß) differs from zero. If T(0,) is the

Jacobian matrix of the above transformation, then we define the Jacobian

J(0,0) by the formula

J(6,9) = det™%(T(B,9)). (15)

We can prove that

/De f(0) = /w J(0,9)F(9). (16)

It should be noted that in contrast to the fermion integral, where the

determinant of the Jacobian matrix appears in the formula of a change of

variables in the power —l, in the above formula it has the power —2.

Now let us turn to the proof of the formula (16). It is based on the

observation that in case two systems of generators of the algebra G are

related by the formulae (14), then this imposes (in contrast to the classical

Grassmann algebra) very strong restrictions on the coefficients of the

expressions at the right-hand sides of (14). Since these restrictions lead to

the numerous conditions on the coefficients, we produce only the conditions

for the entries of the matrix A and prove the formula (16) when the right-
hand side expressions of (14) contain only linear terms with respect to

generators. The entries of A must satisfy the following conditions:

aspapc =0 A<B, C<D
(17)

Asptpp =0 A<B,(nosummation!).
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Taking into account also the condition det A # 0, guaranteeing the linear

independence of the new generators, we conclude that the matrix A is a

diagonal matrix. Thus we have

—

N
—

[D936,9) f9) = [D9 T] (023 F(9) = [DO F(0)
A=l

and the proof is completed.

3.2. Pfaffian of a cubic matrix

It is well known ([7]) that the fermion integral of Gaussian type over

the even-dimensional classical Grassmann algebra can be used to derive

the Pfaffian of a skew-symmetric square matrix. Replacing the notion of

a skew-symmetric square matrix by its cubic analogue and making use of

the integral over the PTGA with binary relations, we define the Pfaffian of

a cubic matrix and calculate its explicit form in the dimension N = 3.

Let ((0) be a cubic form

1
Q(0) =

3 WABC 04080, (18)

with the coefficients satisfying the relations

WABC = JAB WBAC, WABC = QBC WACB,

if there are at least two different indices in the triple (A, B, C) and

WAaAA = 0.

The coefficients wwagpc of the cubic form (#) can be considered as the

entries of a cubic N x N x N-matrix we shall denote by 2. From the above

relations it follows that the entries of the cubic matrix €2 satisfy the relations

WABC + WBCA *+ WCAB + WBAC + WACB +WCBA= 0 (19)

for any triple of indices A, B, C. The property (19) may be considered as a

cubic generalization of the notion of a skew-symmetric square matrix. We

define the Pfaffian of this cubic matrix by the following integral:

Pfon(Q) = /DO 20, (20)

It is not a surprise that the above integral leads to a nontrivial result only
when the number N of generators is divisible by 3. Thus the dimension
N = 3 is the lowermost dimension providing a nontrivial result. Let us
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find the Pfaffian of a cubic matrix in this case. The cubic form (18) then
takes on the form

Q(Ü) = 2 W1923 910203 + Wll2 6%62 + W1922 Üleš + Wll3 9%93
+ W133 Hlöš + W993 Üš93 +(J933 Ügeš

Making use of the definition of the integral over TGA, one obtains the

following homogeneous polynomial for the Pfaffian:

1
Plu(@ = [PO D (1 +9(6) + -2—‚92(9))

= 4w%23 — W211W233 — Wa21W133 — W311W223-

We end this section with the following speculation. Should we develop
the calculus of the cubic matrices based on the TGA approach, we would
define the determinant of the cubic 3 x 3 x 3-matrix (2 as the third power
of the above polynomial Pf.,(€2) and then the determinant would be a

sum of products each containing six entries of the cubic matrix 2. This

suggests that the group S 3 ofpermutations of three elements is likely to play
an essential role in the definition of the determinant of cubic matrices.
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GRASSMANNI ALGEBRA TERNAARSED ÜLDISTUSED

Viktor ABRAMOV

On vaadeldud klassikalise antikommutatiivsuse ternaarset üldistust,
uuritud ternaarselt antikommutatiivsete moodustajatega algebraid, definee-

ritud integraal üle suvalise moodustajate arvuga N algebra ja töestatud

muutujavahetuse valem. Analoogselt fermionintegraaliga on Gaussi tüüpi
integraali abil defineeritud Pfaffiaani analoog kuupmaatriksite jaoks ja
arvutatud selle ilmutatud kuju N = 3 korral.
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