NORMALIZED PERMUTATION POLYNOMIALS OF DEGREE 6 OVER FINITE FIELDS

Ellen REDI

Tallinna Pedagoogikaülikooli matemaatika ja informaatika osakond (Department of Mathematics and Informatics, Tallinn Pedagogical University), Narva mnt. 25, EE-0100, Tallinn, Eesti (Estonia)

Received 14 December 1995, accepted 4 June 1996

Abstract

Permutation polynomials over finite fields are studied. The description and classification of normalized permutation polynomials of degree 6 over a finite field are given. It is proved that the Dickson polynomials of degree 6 are not permutational over a finite field and there exist 64,48 , and 24 normalized permutation polynomials of degree 6 over the fields $F_{2^{3}}, F_{3^{2}}$, and F_{11}, respectively.

Key words: permutation polynomial, finite field.
Let F_{q} be a finite field of order q and F_{q}^{*} its multiplicative semigroup. Here q is a power of a prime number p. As usually, $F_{q}[X]$ denotes the ring of all polynomials over F_{q}. It is well known that any finite field is algebraic, thus any function on the set F_{q} is a polynomial (can be represented by a suitable polynomial over F_{q}). Such a representation is unique if the degrees of the polynomials are less than q in view of the following lemma.
Lemma 1 ($\left[{ }^{1}\right]$, Lemma 7.2). If $f, g \in F_{q}[X]$, then $f(c)=g(c)$ for all $c \in F_{q}$ if and only if

$$
f(X) \equiv g(X)\left(\bmod \left(X^{q}-X\right)\right) .
$$

So it is natural to study over F_{q} the polynomials of degree less than q only.

A polynomial $f \in F_{q}[X]$ is said to be a permutation polynomial on F_{q} if the function

$$
f: c \mapsto f(c)\left(\text { for all } c \in F_{q}\right)
$$

is a bijection on F_{q}. A stronger notion for finite fields is the concept of an exceptional polynomial. A (nonconstant) polynomial f over F_{q} is said to
be exceptional if it is a permutation polynomial on infinitely many finite extensions of F_{q}. Some new examples of exceptional polynomials were given recently in $\left[{ }^{2-4}\right]$. Let us note that not one of exceptional polynomials has degree 6 .

The set $P_{q}[X]$ of all permutation polynomials of degree less than q from $F_{q}[X]$ is a group with respect to the multiplication defined by the following formula:

$$
f(X) \cdot g(X)=h(X) \equiv f(q(X))\left(\bmod \left(X^{q}-X\right)\right)
$$

We know that this group is isomorphic to the symmetric group $S_{q}\left[{ }^{5}\right]$.
All normalized permutation polynomials of degree less than or equal to 5 are known, a table of them is given in [${ }^{1}$]. The aim of this paper is to classify normalized permutation polynomials of degree 6 over finite fields.

To establish the permutationality of a polynomial, we will apply the following lemma.
Lemma 2 ($\left[^{1}\right]$, Lemma 7.1). For a polynomial $f \in F_{q}[X]$ the next five conditions are equivalent:
(1) f is a permutation polynomial over F_{q};
(2) $f: c \mapsto f(c)\left(\right.$ for all $\left.c \in F_{q}\right)$ is a surjection on F_{q};
(3) $f: c \mapsto f(c)\left(\right.$ for all $\left.c \in F_{q}\right)$ is an injection on F_{q};
(4) for any $a \in F_{q}$ the equation $f(X)=a$ has a root in F_{q};
(5) for any $a \in F_{q}$ the equation $f(X)=a$ has exactly one root in F_{q}.

There are some well-known necessary and sufficient conditions for a polynomial $f \in F_{q}[X]$ to be a permutation polynomial on F_{q} (for example, the criterion by additive characters on $F_{q}\left(\left[^{1}\right]\right.$, Theorem 7.7)). We shall use the Hermite criterion ($\left[^{1}\right]$, Theorem 7.4) for this purpose.
Lemma 3 (Hermite criterion). A polynomial $f \in F_{q}[X]$ with $q=p^{m}$ (where p is a prime number) is a permutation polynomial on F_{q} if and only if the next two conditions are satisfied:
(1) f has exactly one root in F_{q};
(2) for any integer t (where $1 \leq t \leq q-2$ and p does not divide t) the polynomial f^{t} is modulo $X^{q}-X$ equivalent to a polynomial of degree $d \leq q-2$.

There is a modification of this criterion with the first condition in the following form:
(1') the polynomial $f^{q-1}\left(\bmod \left(X^{q}-X\right)\right)$ has degree $q-1$.
It follows immediately from this criterion that all linear polynomials are permutational on any finite field. We shall also formulate the following two corollaries.
Corollary 1 ($\left[^{1}\right]$, Corollary 7.5). Over F_{q} there do not exist permutation polynomials of degree d, where $d>1$ and d divides $q-1$.
Corollary 2. Permutation polynomials of degree 6 can exist only over the following finite fields: $F_{2^{m}}, F_{3^{m}}$, and $F_{p^{m}}$, with $p=6 k-1, k \geq 2$,
$k, m \in N$. The monomial X^{6} is a permutation polynomial only on the field $F_{2^{3}}$.

Proof. We study the greatest common divisor of 6 and $q-1$, where q is the order of a finite field. The integer $q-1$ is prime to 6 for $q=2^{3}$, i.e. $G C D\left(2^{3}-1,6\right)=1$. The integer $q-1$ has a common divisor with 6 for all the rest orders $q=p^{m}>6$. Indeed, we have:
$G C D\left(2^{m}-1,6\right)=3$, if $m>3$,
$G C D\left(p^{m}-1,6\right)=2$, if $p=3$ or $p=6 k-1$,
$G C D\left(p^{m}-1,6\right)=6$, if $p=6 k+1$.
The assertion follows from Corollary 1.
Now we shall specify some of the polynomials $f \in F_{q}[X]$. A polynomial f in the form

$$
f(X)=a_{1} X+a_{2} X^{2}+\cdots+a_{n-3} X^{n-3}+a_{n-2} X^{n-2}+X^{n}
$$

is said to be normalized. A normalized polynomial is characterized by the following properties: it is monomic, it has the leading coefficient 1 , its coefficient by X^{n-1} is 0 , and $f(0)=0$. If the polynomial f can be represented in the form

$$
f(X)=c \cdot g(X+b)+d, \quad c \in F_{q}^{*}, \quad b, d \in F_{q},
$$

then we say that f is obtained linearly from the polynomial $g \in F_{q}[X]$.
Proposition 1. For every permutational polynomial $f \in P_{q}[X]$ of degree $n<q$, where the characteristic p is not a divisor of n, there exists a normalized polynomial $g \in P_{q}[X]$ such that f can be obtained linearly from g.

Proof. Let

$$
f(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n-2} X^{n-2}+a_{n-1} X^{n-1}+a_{n} X^{n} .
$$

We define the polynomial g by the following formula:

$$
g(X)=a_{n}^{-1} f(X-b)-a_{n}^{-1} f(b), \quad \text { where } \quad n b=a_{n-1} a_{n}^{-1} .
$$

Such an element $b \in F_{q}$ may not exist if p divides n. This polynomial g is normalized by the construction and it is permutational as a superposition of permutation polynomials [${ }^{5}$].

There are many other permutation polynomials beside the normalized ones.

Proposition 2. The number of all different polynomials of degree $n<q=$ p^{m} obtained linearly from the fixed normalized polynomial $g \in P_{q}[X]$ is equal to:

$$
\begin{array}{ll}
q(q-1), & \text { if } g(X)=X^{n}, n=p^{e}(e=1,2, \ldots, m-1) ; \\
q(q-1), & \text { if } \left.g(X)=a_{i} X^{p^{i}}+a_{i+1} X^{p^{i+1}}+\cdots+a_{k} X^{p^{k}}\right), \\
a_{i} \neq 0, a_{k} \neq 0, n=p^{k}, k=2,3, \ldots, m-1 \\
q^{2}(q-1), & \text { otherwise. }
\end{array}
$$

Proof. Two polynomials of degree $n<q$ over F_{q} are modulo $X^{q}-X$ equivalent if and only if all corresponding coefficients are equal. If $c_{1}, c_{2} \in$ F_{q}^{*} and $c_{1} \neq c_{2}$, then the polynomials $c_{1} g(X)$ and $c_{2} g(X)$ are different because F_{q}^{*} is a multiplicative group. If $d_{1}, d_{2} \in F_{q}$ and $d_{1} \neq d_{2}$, then polynomials $g(X)+d_{1}$ and $g(X)+d_{2}$ are different because F_{q} is an additive group. We know that $(X+b)^{p^{i}}=X^{p^{i}}+b^{p^{i}}$ for all natural numbers i. Thus, if the polynomial $g(X)$ has the form given in Proposition 2, then all the corresponding coefficients of $g(X)$ and $g(X+b)$, except the constant terms, are equal. Now we see that

$$
\left\{g(X+b)+d \mid b, d \in F_{q}\right\}=\left\{g(X)+d \mid d \in F_{q}\right\} .
$$

So, from the fixed polynomial $g(X)$ which has the form given in Proposition 2 we have obtained linearly $q(q-1)$ different polynomials. In other cases the polynomial $g(X)$ has a term $a_{s} X^{s}$ with $a_{s} \neq 0$ and $s \neq p^{i}$ for any positive integer i. If $b_{1}, b_{2} \in F_{q}$ and $b_{1} \neq b_{2}$, then also $\left(X+b_{1}\right)^{s} \neq\left(X+b_{2}\right)^{s}$, and the polynomials $g\left(X+b_{1}\right)$ and $g\left(X+b_{2}\right)$ are different. Thus we have shown that the set

$$
\left\{f(X)=c g(X+b)+d \mid c \in F_{q}^{*}, b, d \in F_{q}\right\}
$$

has $q^{2}(q-1)$ elements.
The conditions under which a linearized polynomial is permutational are well known. A polynomial $L \in F_{q}[X]$ is said to be linearized or p^{s}-polynomial (here p is the characteristic of the field F_{q}) if it has the form

$$
L(X)=\sum_{i=0}^{k} a_{i} X^{p^{s i}}, a_{i} \in F_{q}(i=0,1, \ldots, k),
$$

(for some natural number $s \geq 1$). In particular, if $s=1$, we have a polynomial of the form

$$
L(X)=\sum_{i=0}^{k-1} a_{i} X^{p^{i}}, a_{i} \in F_{q}(i=0,1, \ldots, k)
$$

which is called a p-polynomial. If the polynomial $M \in F_{q}[X]$ satisfies the condition

$$
M\left(X^{d}\right)=(L(X))^{d}
$$

for a suitable linearized polynomial L and some divisor d of $p^{s}-1$, then it is said to be sublinearized. For example, sublinearized monomic polynomials over $F_{3^{2}}$ of degree 6 have the form

$$
M(X)=\left(X^{3}-a X\right)^{2}=X^{6}-2 a X^{4}+a^{2} X^{2}, \quad a \in F_{3^{2}} .
$$

Proposition 3. Sublinearized polynomials $M \in F_{3^{2}}[X]$, defined above, are not permutation polynomials on $F_{3^{2}}$.
Proof. The polynomial $M \in F_{3^{2}}[X]$, defined above, does not satisfy the first condition of the Hermite criterion.

Another type of polynomials which can be permutational in some cases are the Dickson polynomials [${ }^{6}$]

$$
g_{k}(X, a)=\sum_{j=0}^{\lfloor k / 2\rfloor} \frac{k}{k-j}\binom{k-j}{j}(-a)^{j} X^{k-2 j}
$$

Proposition 4. The Dickson polynomials $g_{6}(X, a)$ with $a \in F_{q}^{*}$ (of degree 6) over a finite field F_{q}, where $q>6$, are not permutational on F_{q}.

Proof. It is known (see [1], Theorem 7.16) that the Dickson polynomial $g_{k}(X, a)$, where $a \in F_{q}^{*}$, is permutational on F_{q} if and only if $\operatorname{GCD}\left(k, q^{2}-1\right)=1$. But from the proof of Corollary 2 we deduce that $G C D(q-1,6)>1$ if the order $q>6$.

The main results of this paper are the following three theorems.
Theorem 1. There exist 64 normalized permutation polynomials of degree 6 over the field $F_{2^{3}}$ and these can be listed as follows:

- X^{6},
- $X^{6}+a X^{3}+a^{6} X^{2}, \quad a \in F_{2^{3}}^{*}$,
- $X^{6}+a X^{4}+a^{2} X^{2}, \quad a \in F_{2^{3}}^{*}$,
- $X^{6}+a X^{4}+b X^{3}+\left(a^{2}+a^{4} b+b^{6}\right) X^{2}+a b X, \quad a, b \in F_{2^{3}}^{*}$.

Proof. Let f be one of the polynomials listed above. First we have to check whether f satisfies both conditions of the modified Hermite criterion. Indeed, the polynomial $f^{7}\left(\bmod \left(X^{8}-X\right)\right)$ has degree 7 and the polynomials $f, f^{3}\left(\bmod \left(X^{8}-X\right)\right)$, and $f^{5}\left(\bmod \left(X^{8}-X\right)\right)$ have the degrees less or equal to 6 . Thus all the polynomials listed in Theorem 1 are permutation polynomials on $F_{2^{3}}$.

On the other hand, let us consider all the $8^{4}=4096$ normalized polynomials of degree 6 over $F_{2^{3}}$. A normalized polynomial f over $F_{2^{3}}$ is a permutation polynomial on $F_{2^{3}}$ only if it has one of the forms, listed in Theorem 1. To check this statement is an easy but labour-consuming task. The actual check was performed on a PC with the help of the program package Mathematica 2.2.

Theorem 2. There exist 48 normalized permutation polynomials of degree 6 over the field $F_{3^{2}}$ and these can be listed as follows:

- $X^{6}+a^{2} X^{4}+a^{4} X^{2}+a X, \quad a \in F_{3^{2}}^{*}$,
- $X^{6}+a^{6} X^{4}+a X^{3}+a^{4} X^{2}, \quad a \in F_{3^{2}}^{*}$,
- $X^{6}+(a+b)^{4} X^{4}+a X^{3}+X^{2}+b X, \quad a b=3, \quad a, b \in F_{3^{2}}^{*}$,
- $X^{6}+(a+b)^{4} X^{4}+a X^{3}+X^{2}+b X, \quad a b=8, \quad a, b \in F_{3^{2}}^{*}$,
- $X^{6}+a^{2} b^{6} X^{4}+a X^{3}+2 x^{2}+b X, \quad a b=3, \quad a, b \in F_{3^{2}}^{*}$,
- $X^{6}+a^{2} b^{6} X^{4}+a X^{3}+2 x^{2}+b X, \quad a b=8, \quad a, b \in F_{3^{2}}^{*}$.

Theorem 3. There exist 24 normalized permutation polynomials of degree 6 over the field F_{11} and these can be listed as follows:

- $X^{6}+a X, \quad a^{2}-1 \neq b^{2}, \quad a, b \in F_{11}^{*}$,
- $X^{6}+a X^{3}+a^{8} X^{2}+5 a^{5} X, \quad a \in F_{11}^{*}$,
- $X^{6}+a X^{3}-5 a^{8} X^{2}+4 a^{5} X, \quad a \in F_{11}^{*}$.

The proofs of Theorems 2 and 3 are analogous to that of Theorem 1.
Knowing all forms of normalized permutation polynomials of degree 6 over finite fields is very useful for applications. Permutation polynomials are widely used in theoretical and applied mathematics, for example, in finite geometry, in computer science, in coding theory, in cryptography $\left[{ }^{1,6}\right]$.

REFERENCES

1. Lidl, R. and Niederreiter, H. Finite fields. Encyclopedia Math. Appl. Addison-Wesley, Reading, MA, 1983, 20.
2. Cohen, S. D. Exceptional polynomials and the reducibility of substitution polynomials. Enseign. Math., 1990, 36, 53-65.
3. Cohen, S. D. A class of exceptional polynomials. Trans. Amer. Math. Soc., 1994, 345, 2, 897-909.
4. Müller, P. New examples of exceptional polynomials. In Finite Fields: Theory, Applications and Algorithms (Mullen, G. L. and Shiue, P. J., eds.). Contemp. Math. Amer. Math. Soc. Providence, RI, 1994, 168, 245-249.
5. Cohen, S. D. Permutation polynomials and primitive permutation groups. Arch. Math. (Basel), 1991, 57, 417-423.
6. Mullen, G. L. Permutational polynomials over finite fields. In Finite Fields. Coding Theory and Advances in Communications and Computing (Mullen, G. L. and Shiue, P. J., eds.). Lecture Notes in Pure and Appl. Math. Dekker, New York, 1993, 141, 131-151.

NORMALISEERITUD KUUENDA ASTME PERMUTATSIOONIPOLÜNOOMID ÜLE LÕPLIKE KORPUSTE

Ellen REDI

On veendutud, et kuuenda astme alamlineariseeritud polünoomid ja Dicksoni polünoomid ei ole permutatsioonipolünoomid üle ühegi lõpliku korpuse, ning antud klassifitseeritud ülevaade kuuenda astme normaliseeritud permutatsioonipolünoomidest üle lõplike korpuste.

