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Abstract. Permutation polynomials over finite fields are studied. The description and

classification of normalized permutation polynomials of degree 6 over a finite field are given.
It is proved that the Dickson polynomials of degree 6 are not permutational over a finite field

and there exist 64, 48, and 24 normalized permutation polynomials of degree 6 over the fields

Fos, F32, and F}l, respectively.
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Let F, be a finite field of order qg and F7 its multiplicative semigroup.
Here g is apower of a prime numberp. As usually, F,[X| denotes the ring of
all polynomials over Fy,. It is well known that any finite field is algebraic,
thus any function on the set Fy is a polynomial (can be represented by a

suitablepolynomial overF). Such a representation is unique ifthe degrees
of the polynomials are less than ¢ in view of the following lemma.

Lemma 1 (['], Lemma 7.2). If f,g € F,[X], then f(c) = g(c) for all

c € F, ifand only if

f(X) = g(X) (mod(X? - X)).

So it is natural to study over F, the polynomials of degree less than g

only.
A polynomial f € F,[X] is said tobe a permutation polynomial on Fy

if the function

f:c f(c) (for all c € Fy)

is a bijection on F,. A stronger notion for finite fields is the concept of an

exceptional polynomial. A (nonconstant) polynomial f over F, is said to
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be exceptional if it is a permutation polynomial on infinitely many finite

extensions of F,. Some new examples of exceptional polynomials were

given recently in [2~*]. Let us note that not one of exceptional polynomials
has degree 6.

The set P,[ X ] of all permutation polynomials of degree less than g from

F,[X] is a group with respect to the multiplication defined by the following
formula:

f(X)-9(X) =h(X) = f(¢g(X)) (mod (X?— X)).

We know that this group is isomorphic to the symmetric group S, [°].
All normalized permutation polynomials of degree less than or egual

to 5 are known, a table of them is given in [*]. The aim of this paper is to

classify normalized permutation polynomials of degree 6 over finite fields.

To establish the permutationality of a polynomial, we will apply the

following lemma.

Lemma 2 (['], Lemma 7.1). For a polynomial f € F,[X] the next five
conditions are equivalent:

(1) f is a permutation polynomial over Fy;
(2) f: ¢ f(c) (forall c € Fy) is a surjection on Fy;
(3) f: ¢ f(c) (forall c € Fy) is an injection on Fy;
(4) for any a € F), the equation f(X) = a has a root in Fy;
(5)for any a € F, the equation f(X) = a has exactly one root in Fy.

There are some well-known necessary and sufficient conditions for a

polynomial f € F,[X] to be a permutation polynomial on F; (for example,
the criterion by additive characters on F;, (['], Theorem 7.7)). We shall use

the Hermite criterion (['], Theorem 7.4) for this purpose.

Lemma 3 (Hermite criterion). A polynomial f € F,[X]| withq = p"
(Where p is a prime number) is a permutation polynomial on F ifand only
if the next two conditions are satisfied:

(1) f has exactly one root in F;
(2) for any integert (where 1 < t < q — 2 and p does not divide t)

the polynomial f* is modulo X? — X equivalent to a polynomial of degree
d<gq-2.

There is a modification of this criterion with the first condition in the

following form:

(1°) the polynomial f7~'(mod(X? — X)) has degree q — 1.

It follows immediately from thiscriterion thatall linearpolynomials are

permutational on any finite field. We shall also formulatethe following two

corollaries.

Corollary 1 (['], Corollary 7.5). Over F, there do not exist permutation
polynomials of degree d, where d > 1 and d divides g — 1.

Corollary 2. Permutation polynomials ofdegree 6 can exist only over the

following finite fields: Fom, Fym, and Fym, withp =6k —l, k> 2,
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k‚m € N.The monomial X® is a permutation polynomial only on the

field F23.

Proof. We study the greatest common divisor of 6 and g —l, where gis
the order of a finite field. The integer g — 1 is prime to 6 for ¢ = 23, i.e.

GCD(2° — 1,6) = 1. The integer g — 1 has a common divisor with 6 for
all the rest orders ¢ = p™ > 6. Indeed, we have:

GCD(2™ —1,6) =3, ifm > 3,
GCD(p™—-I,6)=2,ifp=3orp =6k —l,
GCD(p™ —1,6) =6, ifp= 6k + 1.

The assertion follows from Corollary 1. []

Now we shall specify some of the polynomials f € Fy[X]. A

polynomial f in the form

M XFr OnD a ,X" 24+ X"

is said tobe normalized. A normalized polynomial is characterized by
the following properties: it is monomic, it has the leading coefficient 1,
its coefficient by X”-!' is 0, and f(0) = 0. If the polynomial f can be

represented in the form

f(X)=c-g(X+b)+d, ceF], bdeF,

then we say that f is obtained linearly from the polynomial g € F,[X].

Proposition 1. For every permutational polynomial f € P,[X] ofdegree
n < gq, where the characteristic p is not a divisor of n, there exists a

normalized polynomial g € P,[X] such that f can be obtained linearly
from g.

Proof. Let

f(X) = X+a X2+ AXaX +a,X"

We define the polynomial g by the following formula:

MTAaHO where nb=a, ia,".

Such an element b € F, may not exist ifp divides n. This polynomial g is

normalized by the construction and it is permutational as a superposition of

permutation polynomials [°]. O

There are many other permutation polynomials beside the normalized
ones.
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Proposition 2. The number ofall differentpolynomials ofdegree n < q =

p™ obtained linearly from the fixed normalizedpolynomial g € P,[X] is

equal to:

a(g-1), fgX)=X",n=p°(€=l2,...,m—l);
HELE EK OR XP"),

E aSSSN
q’(q — 1), otherwise.

Proof. Two polynomials of degree n < q over F, are modulo X' - X

equivalent if and only ifall corresponding coefficients are equal. If cl, c» €

F 7 and cı # c2, then the polynomials c;g(X) and cog(X) are different

because F 7 is a multiplicative group. If dl,d» € F, and di # dj, then

polynomials g(X)+d; and g(X)+d; are different because Fy, is an additive

group. We know that (X + b)?" = XP? + b for all natural numbers 1.

Thus, if the polynomial g(X) has the form given in Proposition 2, then all
the corresponding coefficients of g(X) and g(X + b), except the constant

terms, are equal. Now we see that

{9(X+b)+d|bde F}={g9(X)+d|deF,}.

So, from the fixed polynomial g(X) which has the form given in

Proposition 2 we have obtained linearly ¢(¢ — 1) different polynomials.
In other cases the polynomial ¢g(X) has a term a,X® with a; # 0 and
s # p* for any positive integer i. If by, b, € F, and b; # by, then also

(X +bl)° # (X + b2)*, and the polynomials g(X + b;) and g(X + by) are

different. Thus we have shown that the set

MO EE

has ¢?(q —1) elements. O

The conditions under which a linearized polynomial is permutational
are well known. A polynomial L € F,[X] is said to be linearized or

p°-polynomial (here p is the characteristic of the field F}) if it has the form

k

L(X) = Za‚-Xp“‚ a; € Fq (i=0717"'7k)7
=0

(for some natural number s > 1). In particular, if s = 1, we have a

polynomial of the form

k—l

L(X)=) X", a; € F(i=0,1,...,k)
I=o

which is called a p-polynomial. If the polynomial M € F,[X] satisfies the
condition

M(XY = (L(X))"
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for a suitable linearized polynomial L and some divisor d ofp° —l, thenit is
said tobesublinearized. For example, sublinearizedmonomicpolynomials
over F32 of degree 6 have the form

M(X)=(X*—-aX)’ =X% —2aX*+a’X?% OEEF

Proposition 3. Sublinearized polynomials M € F32|X], defined above,
are not permutation polynomials on F;3:.

Proof. The polynomial M € F32[X], defined above, does not satisfy the

first condition of the Hermite criterion. []

Another type ofpolynomials which can be permutational in some cases

are the Dickson polynomials [°]

Lk/2]

gk(X,a)ZZL(k_j .
m

hoa j )(_a)JXk—zj'
Proposition 4. The Dicksonpolynomials g6(X, a) with a € F} (of degree
6) overa finite field F,, where g > 6, are notpermutational on F,.

Proof. 1t is known (see ['], Theorem 7.16) that the Dickson polynomial
9x(X,a), where a € F, is permutational on Fif and only if

GCD(k,q*> —1) = 1. But from the proof of Corollary 2 we deduce that

GCD(q—l,6) > 1 if the order g > 6. O

The main results of this paper are the following three theorems.

Theorem 1. There exist 64 normalizedpermutation polynomials ofdegree
6 over thefieldFys and these can be listed asfollows:

X6,

X 0 +aX?+a°X? ac€Fy,

X +aX*+a®X? ac€F},

X 6 +aX*+sX?+ (a?+a*b+ b6°)X?+abX, a,b€F».

Proof. Let f be one of the polynomials listed above. First we have
to check whether f satisfies both conditions of the modified Hermite

criterion. Indeed, the polynomial f’(mod(X® — X)) has degree 7 and

the polynomials f, f3(mod(X® — X)), and f°(mod(X*®* — X)) have the

degrees less or equal to 6. Thus all the polynomials listed in Theorem 1 are

permutation polynomials on Fbs.
On the other hand, let us consider all the 8% = 4096 normalized

polynomials of degree 6 over Fys. A normalized polynomial f over Fjs
is a permutation polynomial on Fys only if it has one of the forms, listed

in Theorem 1. To check this statement is an easy but labour-consuming
task. The actual check was performed on a PC with the help of the program
package Mathematica 2.2. [
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Theorem 2. There exist 48 normalizedpermutation polynomials ofdegree
6 over the field F32 and these can be listed asfollows:

X 6 +a?X*+a*X?+aX, ae F,

X 6 +a°X*+aX?+a*X?, ae F,

Xs+(a+b)*X*+aX3+X2+bX, ab=3, a,beEFh,

Xs+(a+b)*X*+aX3+X2+sbX, ab=B, a,b€Fp,

XS+oa2bbX*+aX3+222+bX, ab=3, a,b€ Fp,

X 6 + a?b°X* + aX3 +2x? +bX, ab=3B, a,be Fp.

Theorem 3. There exist 24 normalizedpermutation polynomials ofdegree
6 over thefield F, and these can be listed asfollows:

Xs+aX, a°-1%0°%) a,bEFh,

Xs+aX*+oa°X* +5O°X, a€Fh,

X6 +aX? — sa°X? +4O°X, a€ Fh.

The proofs of Theorems 2 and 3 are analogous to that of Theorem 1.

Knowing all forms of normalizedpermutation polynomials of degree 6

over finite fields is very useful for applications. Permutation polynomials
are widely used in theoretical and applied mathematics, for example, in

finite geometry, in computer science, in coding theory, in cryptography
[1 61.
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NORMALISEERITUD KUUENDA ASTME

PERMUTATSIOONIPOLÜNOOMID ÜLE LÕPLIKE KORPUSTE

Ellen REDI

On veendutud, et kuuenda astme alamlineariseeritud polünoomid ja
Dicksoni polünoomid ei ole permutatsioonipolünoomid üle ühegi lõpliku
korpuse, ning antud klassifitseeritud ülevaade kuuenda astme normalisee-

ritud permutatsioonipolünoomidest üle lõplike korpuste.
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