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Abstract. In this paper we provide a condition sufficient for two semidirect products of two

finite cyclic groups to have isomorphic semigroups ofendomorphisms. It follows that many
such groups are not determined by their semigroups of endomorphisms.
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1. INTRODUCTION

Let G be a fixed group and End(G) the semigroup of all

endomorphisms of G. If for an arbitrary group H the isomorphism of

semigroups End(G) and End(H) implies the isomorphism of groups G
and H, then we say that the group G is determined by its semigroup of

endomorphisms (in the class of all groups). There exist many examples
of groups that are determined by their semigroups of endomorphisms.
Some of such groups are: finite Abelian groups (['], Theorem 4.2),
nontorsion divisible Abelian groups ([2], Theorem), Sylow subgroups of

finite symmetric groups ([3], Corollary 1). On the other hand, there exist
also groups that are not determined by their semigroups of endomorphisms:
some Schmidt’s groups ([*]), the alternating group A 4 ([°]). A simple
example of a group of this kind is given in [®]. It is shown there that the

groups

G= 3(a,b |b =a =l, b7'ab = a'®) (1)

and

H = (c,d|d®=c"=l,d'ed=C") (2)
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are nonisomorphic but their semigroups of all endomorphisms are

isomorphic. Both of the groups (1) and (2) are semidirect products of their

two subgroups: G = (a)\(b), H = (c)Md).
In the present paper we extend the results of [°]. We find conditions

for the semidirect product of two finite cyclic groups G = (a)A(b)
under which G is not determined by its endomorphism semigroup. These

conditions are satisfied, in particular, by the groups (1) and (2).
In order to state our main theorem, we give some notations. Let v, u,

andrbe some natural numbers,v > 1, u > 1, r > 1. Denote by G(v, u, 1)
a group, given by the generators a and b, and by the defining relations

b =a“=l, b 'ab=da". (3)

The number r is regarded here as an element of the group Z; of all units of

the ring Z,, of integers modulo u. The conditions (3) determine a group if

and only if

r”=l (mod u), (4)

I.e.

o(r) | v, (5)

where o(r) is the order of r in the group Žž. The group G(v,u,r) is

decomposed as a semidirect product

G(v,u,r) = (a) X(b). (6)

Let

(7)(D (& DEr

wherepy,. .

~p, are different prime numbers. Then G(v, u, r) can be given
by the generators b, a1,... , ax and the defining relations

W alpTl —— akp}:‘k =l,

a;a; = a;a; (7’7] = 17 R k):

V (8)

where r; € Z;m and, similarly to (4) and (5)

T (modp;“), (9)

I.e.

o(r;) | v. (10)

The elements in the relations (3)-(10) are connected by the eguations a =

ai...ap and r = r; (in the ring Z,mi). In the sequel we use for the group

G(v,u,r) a new notation G(v,u;rl,...,Tx). Now we can formulate our

main theorem.
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Theorem. Let Hbe an arbitrary group and A = G(v,u;rl,...,Tk);,
where v = p", p is a prime not dividing u. The two following statements

hold:

(1) semigroups End(H) and End(A) are isomorphic ifand only if

H = G('U,'LL; Ply+++3 pk)7

where o(r;) = o(p;) for eachi € {1,2,...,k};
(2) the group A is determined by its semigroup ofendomorphisms ifand

only ifamong the integers o(r1), . .

~ 0(rk) only one can be greater than 2.

We shall use the following notations: (u,v) —
the greatest common

divisor of numbers u and v; K(z) = {y € End(G) | yz = ıy = vy},
where z € End(G); D(z) = {y € Auwt(G) | yr = zy = z}, where

z € End(G).

2. PRELIMINARIES

Later we shall use the following five lemmas.

Lemma 1. Let Gbe a group, y,z € End(G), and yz = zy. Then

(Imy)z C Imy and (Kery)z C Kery.

The proof ofLemma 1 is evident.

Lemma 2 ([], Theorem 3). If H is a group and End(H) %

End(G(v,u,r)), then H = G(v, u, p) for some p € Z.

Lemma 3. Let pbe a prime, v = p", and (v,u) = 1. Then groups

G(v,u,r) and G(v,u, p) are isomorphicif and only if (r) = (p) in the

group 2.

Lemma 3 follows from the results of [?].
The group G(v, u, r) is decomposed as (6). Denote by z the projection

of G(v, u, ) onto its subgroup (b):

br=b, ax =l.

Then z is an idempotent of the semigroup End(G(v, u, r)). In the following
lemma we shall show that the order o(r) of r in the group Z;; is described

by properties of x in End(G(v, u, 7)).

Lemma 4. Let qbe a prime, u = q”, and

M = {z € End(G(v,u,r)) | 2z = z2, (2) N K(z) = o}.

Then

i

OEo(r) =v
i
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Proof. Let G = G(v,u, r). An arbitrary endomorphism of G is determined

by images of the generators a and b. First we shall characterize elements of

M.
Let z € M. By Lemma 1

bz =6l az=4d'; j€ 7, i€ Z,. (11)

The map, given by (11), generates an endomorphism of G if and only if

CM = (az)". (12)

It is easy to show by the relations (3) that Eq. (12) is true if and only if
ir = ir (mod. u).Le.

ir’=i (mod u), (13)

sincer € Z,,.
Note that (i, u) = 1. In fact, if (¢, u) # 1, then ™ = 0 in Z, and

bz™ = b(xz™) = b(z™x),

azmzaim:_aO:l_
= a(zz™) = a(z™x) )

since bx = b, - 1. Hence, 2™z = z2™ = 2™, z™ € K(z), and

(2) N K(x) # 0. This contradicts to z € M. Therefore, (i,u) = 1 and

i € Z,. It follows that the congruence (13) is equivalent to

=1 (mod u). (14)

Conversely, take z € End(G) given by (11) where (i, u) = 1. Then

E

a(zzr) = a'z = I'= a(zz),

and zz = zz. Because (i,u) = 1, for an arbitrary natural number ¢,

azt = a #1 =az = alxz')

and 2* # z2t. Therefore, 2t ¢ K(z), () N K(z) =O, and z € M.

Hence we have shown that the set M consists of all maps (11) where

i € Z! and the congruence (14) is true, i.e. o(r) | j. Therefore, there

are |Z| options for 7 and v/o(r) options for j (see also the condition (5)).
Consequently,

—

ZžMl=cO5
and

avn Zu
o(r) =

T
(15)
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Finally, we shall show that

|D(z)| = |Z,|. (16)

Let z € D(x). By Lemma 1 z can be expressed in the form of (11). Since

z € Aut(G) and x = zz = zz, theni € Z; and

b=bz = b(zx) = ¥z=,

i.e. j = 0. Conversely, it is easy to see that the map z, given by (11),
where j = 0 and¢€ Z}, belongs to D(z). Consequently, Eq. (16) is true.

The statement of the lemma follows now from (15) and (16). The lemma

is proved.

Lemma 5 ([!], Lemma 1.6). If H is a group and y is an idempotent of
End(H), then the semigroups K(y) and End(lm y) are isomorphic. This

isomorphism is given by the correspondence z — z |imy Where z € K(y).

3. ENDOMORPHISMS OF THE GROUP G(v, u, r)

Throughout this section it is assumed that G = G(v, u, ), where

v=7p", (v,u) =l, (17)

and p is a prime. Then u is expressed in the canonical form (7) and G is

given by the defining relations (8), i.e.

G=G(v,u,r) = G(v,u;Tl,.--,Tk).

Since |Z;‚_‚„| = p;™ (p; — 1) and o(r;) | IZ;'„nil, then by (10) and (17)

p | (ps — 1), i.e. p; > 2 foreachi € 11,...,k). Therefore, for each

integer %

Zöm; 1s a cyclic group. (18)

Our aim is to describe endomorphisms of (. An arbitrary
endomorphism of G is determined by images of generators b, ay, . .., ax.

Suppose z € End(G). As G is solvable and (b) is a Sylow p-subgroup of

G, thereexistj € Z, and g € (a4 ..., a,) = (a) such that

bz =g 'bg. (19)

A unique Sylow p;-subgroup of G is (a;). Therefore,

a;z = a;
" (20)

for some t; € Zym (i=1,..., k).
Conversely, suppose that g € (a1,...,ak), j € Zy, and the map z

is given by (19) and (20). The following lemma gives an answer to the

question: when z € End(G)?
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Lemma 6. The map z, given by (19) and (20), determines an

endomorphism of G ifand only if

tiri?=tri (mod p™) (21)

foreachi=l,2,...,k.

Proof. Assume that z is given by (19) and (20). The map z presents an

endomorphism of G only if it preserves the defining relations (8) of G, i.e.

(bz)” = (alz)P” = .. = (apz)Pk" =l, (22)

RE = (uz)(a;z) (i;1=1,..., k), (23)

0G = (a;2)" (i=1,...,k). (24)

In view of (19) and (20) it is obvious that (22) and (23) hold without any
restrictions. Equation (24) is equivalent to

(9')t- al jg)ta¥ - (g7Wg)=a"

After simplifications it follows that

tirj
a'i L— ašzr

The last equation is equivalent to the statement of the lemma. The lemma
is proved.

Denote further the endomorphism z of G as

z:[]yth’t/mg]) (25)

where z is given by (19) and (20). Here j € Z,, i € Z,mi, g € (a)
(Q1ax), and (21) is true. If still z' € End(G) and

I TE A
2 =l7t te 4], (26)

then z = 2’ if and only if

j=j, t=t,... , k=b, 997 €Ce(b)

Therefore, it is necessary to know when an element h from (ay, ..., ax)
belongs to Ca(6).

Lemma 7. An element h = aj*...a;* of the subgroup (a) = (a1 ax) of
G commutes with I’ifand onlyiffor eachi =1,...,k

Sz‚r_] — m

;
=; (m

1 ( od p™). 27(27)

Lemma 7 follows directly from the equation h®’ = b’h and relations

(8).
Finally, we shall find a multiplication rule in the semigroup End(G).
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Lemma 8. Let z and z' be the endomorphisms ofG given by (25) and (26).
Then

27=[l tt g + (92))]. (28)

Proof. Indeed,

b(zz') = (bz2)2' = (97'Vg)2' = (92')"(b2') (97')

= (g2')(g 0" ¢') (92") = (¢' - (g2 "7 (¢ - (92)),

A A = ašiti*'.
The lemmais proved.

4. PROOF OF THE THEOREM

Let the group G be the same as in Section 3, i.e. G = G(v,u,r)
G(v,u;r1,...,r) and the conditions (17) be true. It is clear that

G=@o=( IT @)\ (29)
J=l,j#l

and

la;)X(b) = G(v,p; , Ti). (30)

Lemma 9. If H is a group such that End(H) = End(G), then H =

G(v,u; pl,-- ~ pr), where pi € Z;m and o(r;) = o(p;) in the group Z;}n,.
foreachi=l,...,k.

| \

Proof. Suppose End(H) = End(G) and * : End(G) — End(H)
is an isomorphism. Let z and z; be projections of G onto subgroups (b)
and (a;)A(b), respectively. Then z*, z} € End(H), and by Lemma 2

H = G(v,u,p) for some p € Z*. Identify H = G(v,u, p). Then there

exists p; € Z;m such that

H = G(’U,’U,;pl, 3S '7pk)-

The group H is given by the generators d and c and the relations

E Z a N (31)

or, otherwise, by the generators d, cy, . .

~ ¢ and the relations

a=l,

GC — GÜ (’l„j = 1, .. ~k), (32)

dled=c" (i=1,...,k).
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Similarly to (10), (29), and (30), we have

olpi) | v (33)

and

H= (c;) JA((ci)A(d)),VIL)
AS GDpi).

The restriction of the isomorphism * is an isomorphism between the

semigroups K(x;) and K(x*). Hence, by Lemma 5

End(lmz;) = End(lm z}). (34)

Since

Im Tj = <al>)x<b> — G(U,pšni, Ti);

it follows from the isomorphism (34) and Lemma 2 that

Im z} = G(v,p;",0;) cH

for some 0; € Zm- Therefore, there exist C;, d € Im z} such that

Im z} = (¢;)\(d)

and

&= =l, dlgd=2"
7 ) 2 7 ) 35

o(G) = o(c;) = pi™, o(d) =o(d) =v.

(35)

Whereas (c;) is the unique Sylow p;-subgroup of H, (e;) = (õ) and

by (35) K

c (36)

Since H is solvable and (v,u) = 1, the subgroups (d) and (d) of H are

conjugate - -

d=cdd (37)

for somej € Z, andl € Z,. Here (v,l) = 1, because o(d) = o(d) =

o(d') = v. After simple calculations it follows from (36) and (37) that
]

¢ = ¢, 05 = plin Zmi Therefore, o(0;) = o(p;) because (v,[) = 1

and o(p;) | v by (33). Let us apply now Lemma 4 to the groups Im z; and

Im z}. It gives us o(r;) and o(0;). By the isomorphism (34) o(r;) = o(0;).
Consequently, o(r;) = o(p;). The lemma is proved.

Lemma 10. f H = G(v,u;pi,...,Px), where o(p;) = o(r;) for each

1=1,2,...,k, then

End(H) = End(G). (38)
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Proof. Suppose that the assumptions of the lemma are true. The group
H is given by the relations (31) just as by the relations (32). In view of

results of Section 3, each z € End(G) is expressed in the form (25) where

4,11, ..., 1 satisfy the conditions (21) and g € (a) = (ay,...,ax). The

multiplication in End(G) is given by (28). Similarly, each w € End(H) is

expressed in the form

W,b

where

] € Zy; HE Zp;ni; h € (C) = <Cl,...,Ck>.

Analogues of Lemmas 6,7, and 8 hold for elements of End(H).
Consequently, if we show that the conditions (21) and (27) are equivalent
to

t;o =t;ipi (mod p™) (39)

and

szpf =s; (mod p™), (40)

respectively, then the correspondence

;- . al ? j. - ot ?itt0,.a mjttO O

gives the isomorphism between semigroups End(G) and End(H).
Letus show an eguivalence of (21) and (39). It follows from (18) and

o(ri) = o(pi) that (ri) = (p;) in Z’m,. Therefore, p; = ri for some /. If

(21) 1s true, then
:

—
L

—
-1

_ j -1
— j I-1

—
») j -2

— —
,

—
l m;

and (39) 1s also true. Symmetrically, from (39) follows (21).
Consequently, the conditions (21) and (39) are equivalent. Similarly we

can prove the equivalence of (27) and (40). The lemma is proved.

The first statement of Theorem follows fromLemmas 9 and 10.

It is well known that the map r —— (r,7,...,7) is the isomorphism
between the rings Z, and Zp;nl X r X Zp:"k where u is given by (7).

Therefore, in view of Lemma 3 and the first statement of Theorem, the

group G is determined by its semigroup of endomorphisms if and only if

o(r;) = o(p;) foreachi=l,2,...,k (41)

implies
((rl>-+.,74)) = ((Pl>--:,Pe)) (42)

in the group Z*»; X 1X Zr
Pı Dr
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By (18) and (10) the groups Zmi are cyclic and o(r;) is a power of p.

If all but one of numbers o(r;),...,o(r;) are 1, for example, o(r;) = 1

for each i = 2,3,...,k, then Eq. (42) follows always from (41). Hence,
assume that o(r;) > p and o(ry) > p. First, let p > 2. Choose

p = r?and p; = r;foreach: = 2,...,k. Then Egs. (41) are

true, but (42) does not hold and, therefore, G is not determined by its

semigroup of endomorphisms. Let now p = 2. If all but one of the numbers

o(r1),. ..,0(rx) are less than or equal to 2, then it is evident that Eq. (42)
follows from (41). Hence, assume that o(r;) > 4 and o(ry) > 4. Choose

pm = ri and p; = r; foreach¢ = 2,...,k. Then Egs. (41) are true, but

(42) does not hold and, therefore, G is not determined by its semigroup of

endomorphisms. Combining the cases p > 2 and p = 2, it is clear that Eq.
(42) follows from (41) if and only if among the integers o(r1), ..., 0(rk)
only one can be greater than 2. The second statement of Theorem is proved
and so is Theorem.

5. EXAMPLES

Let us examine the group G = G(3,7-13;2, 3). Here

v=3, u=7-13, rl=2€77, ro=3¢€ 7,

O(T'l) =3, 0(7‘2) =3.

The group G is well defined because o(r;) | v and o(r3) | v. By Theorem

the group G is not determined by its semigroup of endomorphisms. It is

easy to see that G is the group given by (1). Similarly, the groups G(3, 37-
61; 26, 13) and G(5, 11-31; 5,2) are not determined by their semigroups of

endomorphisms.

REFERENCES

1. Puusemp, P. Idempotents of endomorphism semigroups of groups. Acta et Comment.

Univ. Tartuensis, 1975, 366, 76—104 (in Russian).
2. Puusemp, P. O polugruppe endomorfizmov delimoj abelevoi gruppy. In Metody algebry

i analiza. TGU, Tartu, 1983, 14—16 (in Russian).
3. Puusemp, P. Connection between Sylow subgroups of symmetric group and their

semigroups of endomorphism. Proc. Estonian Acad. Sci. Phys. Math., 1993, 42,2,
144-156.

4. Puusemp, P. Abstract description of Schmidt’s groups by their endomorphism
semigroups. Tallinna Poliitehnilise Instituudi Toimetised, 1984, 568, 91-105 (in

Russian).
5. Puusemp, P. A property of the alternating group Ay4. Tallinna Poliitehnilise Instituudi

Toimetised, 1987, 645, 169-173 (in Russian).



144

6. Puusemp, P. On the determinedness of a semidirect product of cyclic groups by its

semigroup of endomorphisms. Tallinna Poliitehnilise Instituudi Toimetised, 1980,
482, 131-148 (in Russian).

7. Puusemp, P. A semidirect product of a group and a direct product of groups. Tallinna

Poliitehnilise Instituudi Toimetised, 1981, 511, 141-149 (in Russian).
8. Basmaji, B. G. On the isomorphisms of two metacyclic groups. Proc. Amer. Math. Soc.,

1969, 22, 175-182.

TSÜKLILISTE RÜHMADE POOLOTSEKORRUTISE
MÄÄRATAVUS TEMA ENDOMORFISMIDE POOLRÜHMAGA

Peeter PUUSEMP

Olgu A lõplik rühm, mis avaldub kahe tsüklilise alamrühmapoolotse-
korrutisena A = (a) X(b), kus elemendi b järk on algarvu aste, jaühisosata
elemendi a järguga. On antud tarvilikud ja piisavad tingimused selleks,
et rühm A oleks määratud oma endomorfismipoolrühmaga kõigi rühmade
klassis.
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