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Abstract. Construction of the local geodesic multiplication is described. Following Okubo

(Gen. Relativity Gravitation, 23, 599-605) with some simplifying modifications, two families

of local geodesic BRST-like cohomologies are introduced. Mathematical problems arising
from these constructions are briefly discussed.
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1. GEODESIC MULTIPLICATION

Let us introduce some basic algebraic notions. A quasigroup [!] is
a set G with a binary operation (multiplication) which has the following
property: in the equation gh = k, the knowledge of any two elements

specifies the third one uniquely. A quasigroup with a unit element e iscalled
a loop.

For every element g of a loop G, the left (L) and right (R) inverse
elements are defined by g;'g = e = ggy', respectively. As in the case

of groups one can also define the left and right translations Ly, Rı: G — G

by

gh=L,h= Ryg, g,heq. (D

It follows from the definition of the quasigroup that the translations are

bijections.
Let M be a manifold with affine connection (coefficients) F;k. For a

fixed point e € M, choose a tangent vector X from the tangent spaceT,M
of M at e. Consider a local path ¢ — g(t; X) in M through the point e with

the tangent vector X € T,
M,

: d i - X |
jlt;x)=e -HDx @
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It is well known that this path is a unique local geodesic path through e in
the direction of X iff the following differential equations hold:

6 dg* d?¢* . dg’ dg*
A = 2A -0 3

dt PAA (3)

The exponential mapping X — g = exp, X = g(1; X) at e is known [?] to

be a local diffeomorphism of a suitable neighbourhood of the origin ofT,M
onto the correšponding (normal) neighbourhood of e € M. This means

that every point from the normal neighbourhood of e can be generated via

the exponential mapping by the corresponding tangent vector from T.M.
The local geodesic loop at e can be constructed in such a neighbourhood
M, of e where all required exponential mappings are well-defined local

diffeomorphisms.
Choose in M, another local geodesic arc h(s; V) through the point e in

the direction Y € T, M.

Toperform a parallel transport of X € T,M along
this geodesic, we must solve the linear Cauchy problem

OEW Ran .
— = — LXV = X'(0) =X. 4

Ös ds
_-

ds 0, (0) (4)

Carrying out the parallel transport of X € T.M, we obtain at h = exp, Y

the tangent vector X' = X'(1) € T,M. Now, draw the local geodesic arc

through h in the direction X' and mark the point exp, X' on it. This point
is called the geodesic product of the points g and h, and will be denoted as

gh. The explicit formula reads [* *]

gh = (gh)e = Rıg = Loh = (exp,, oTf o expz*)g, (5)

where 75: I.M — T,M denotes the parallel transport mapping of tangent
vectors from 7T,M into T,M along the unique local geodesic arc joining
the points e and h: 7£(X) = X’. In respect of multiplication (5) only right
translations can be explicitly seen,

R, = exp, 01/ oexp;'. (6)

It can be shown [*] that the parallel transport mapping 7¢: T.M — T,M
coincides with the differential of theright translation R}, ate, 78 = (Rp)«-

The neighbourhood M, of e with the multiplication rule (5) turns out

to be a local differentiable loop [>~°] denoted henceforth by M, as well.

The unit element of M, is e and the local geodesic paths through the unit

element e are 1-parameter local subgroups of M,.
The geodesic multiplication need not be commutative and associative.

There may exist such a triple of points, g, h, k € M., that

ghžhg, (gh)k # g(hk). (7

It turns out that noncommutativity and nonassociativity of local geodesic
loops are intimately related to the torsion and curvature. Let the local
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coordinate system in M, be such that the local coordinates of the unit e €

M, are zero. Denote the torsion and curvature tensors as Si,, and Rimn»
respectively. Direct computations [°] show that

((ho)z (9m))" = 28im()gh"+..., ®)

(IAM (gh)K]) = (Rima(€) — Simm(e))lHMk ... — (9)

It follows that all geodesic loops of the affine space are (isomorphic)
Abelian groups. In this particular case, the geodesic multiplication can be

seen from the ordinary vector addition rule

(P ( — €Y. (10)

The Abelian property manifests algebraically the fact that affine spaces

are globally torsionless and flat. In a sense, geodesic multiplication is a

deformation of the vector addition rule.

2. GEODESIC BRST-LIKE COHOMOLOGIES

Okubo [°] proposed a formal construction of a BRST-like nilpotent
operator for a manifold with zero curvature. The idea is based on using a

given local frame field and also a system of anticommuting variables. We

follow [°], but with certain simplifying modifications.
In the present case, there are two natural possibilities to introduce frame

fields. In fact, both the left and right translations of a local geodesic loop
M, can be used to construct local frame fields on M,. Define

It follows from the definition of a quasigroup (loop) that both matrices are

locally invertible. The corresponding local frame fields read

Li(9) = L™(9)on, Ri(9) = R™(g)om. (12)

The algebraic meaning of the frame field components (11) can be seen via

the corresponding differentials. For a given X € T,M we have

Lx(9) = (Lo)xeX = XfLi(g) eT,M, (13)

Rx(9) = (Ry)«eX = X'Ri(g9) € T,M. (14)

Definition A (Structure functions). The structure functions )\fj(g) and

pi;(9) of M. are defined by

(Li(g), Li(9)] = =5(9)L (9), (15)

[Ri(g), R;(g)] = +p6;(g) Ra(9)- (16)
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The structure functions need not be coordinate-independent and need
not coincide. The initial conditions read

X 5 (e) = pf;(e) = CF. (17)

In particular, if M. is a local (geodesic) Lie group, then the Maurer-Cartan

eguations read

A 5 ((g) = Cf = ij(g)' (18 )

To follow Okubo’s construction | [%l, we need auxiliary
coordinate-independent operators b; and ¢* satisfying the defining relations

bibj + bjbz =o= cicj + CjCi
,

(19)

;
(20)

Definition B (BRST-like operators (cf. [°]). The local geodesic BRST-like

operators are defined as follows:

Or(9)= Li(g) +3o°o
@' Li(g) + 50 o'br M (g); 21)

: 1..
Qr(9) = CRS(9) — SCCb pis(9). (22)

Note that both operators are coordinate-dependent. In the case of a

(local) Lie group, (21) and (22) give conventional BRST operators. In

addition, the both operators depend on the point e € M. We have in fact
two operator-valued maps: e — Q%(g) and e — Q%(9).

Theorem (cf. [°]). Qr(g) and Q.(g) are nilpotent,

Q 3 ( g) ==0 = Q%(g) (23)

Corollary (Geodesic BRST-like cohomologies). There exist two kinds of
local geodesic BRST-like cohomologiescorresponding to these operators :

H_(g) = kerQ_(g)/imQz_(g), Hr(g) =kerQr(g)/imQr(g). (24)

Both cohomologies are coordinate-dependent as well. In addition, here

is also a hidden dependence on the point e € M, which one should (de)note
to avoid any confusion. So one has two families of local cohomology fields,
both families are parametrized by M. In general, these cohomologies
are quite sophisticated. Some simple special cases with interpretation via

de Rham cohomology were considered in [* 7].
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3. CONCLUDING REMARKS ANDDISCUSSION

All our considerations have been local. But one can repeat the above

constructions and attach local geodesic loops and the corresponding BRST-

like cohomologies to all nonsingular points of M. Via these constructions

one can treat the manifold algebraically, as families of local geodesic loops
and BRST-like cohomologies. The families can be parametrized by the

points of M. Patching conditions for local geodesic loops attached to

different points of a manifold have been described by Sabinin [*] (see also

[3]), the resulting structure is called a geo-odular structure of a manifold.

One can study this structure via BRST-like cohomologies.
A thoroughly studied item in modern algebra is the algebraic structure

of a given cohomology [*~ll]. This is largely motivated by quantization
problems of gauge fields, strings, and gravity. It has been well known for

a long time that the Hochschild cohomology (of an associative algebra)
carries a Gerstenhaber algebra structure [°]. Through the Cohomology
Comparison Theorem (CCT) one can see a Gerstenhaber algebra structure

of a simplicial cohomology ['°]. It turns out that the Gerstenhaber algebra
structure may crop up from BRST cohomologies as well [*2]. So, there

naturally arises the problem about the algebraic structure of the (geodesic)
BRST-like cohomology.
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GEODEETILISED LUUBID JA BRST-SARNANE

KOHOMOLOOGIA

Piret KUUSK, Eugen PAAL

On kirjeldatud afıinse seostusega muutkonna lokaalset geodeetilist kor-

rutamist. Järgides S. Okubot mönede modifikatsioonide osas, on sis-

se toodud kaks lokaalset BRST-sarnaste kohomoloogiate peret. Lühi-

dalt on osutatud neist konstruktsioonidest tulenevatele matemaatilistele

probleemidele.
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