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Abstract. In 1982 Spinrad (Two Dimensional Partial Orders. Princeton, 1982) defined

modules as subgraphs with certain properties and discovered that graphs could be canonically
decomposedwith the help of modules. In this paper it is demonstrated that his technique leads

us to a new concept of graph morphism which is a certain generalization of the so-called strong
homomorphism.
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1. INTRODUCTION

Comparability graphs are very important objects in the field of data

compressing and combinatorics. They have been studied in detail

by Ghouild-Houri ['], Gilmore and Hoffman [?] in the sixties and

independently by Pnueli, Lempel, and Even [*] in the seventies. In 1982

Spinrad [*] defined modules as subgraphs with certain properties and

discovered that graphs could be canonically decomposed with the help of

modules. It is demonstrated here that his technique leads us to a new

concept of graph morphism which is a certain generalization of the so-

called strong homomorphism. This enables us to define injective and

projective properties of graphs and to formulate a new induction principle.
Section 2 is a popular introductionto comparability graphs where we set up

an interesting problem about the structure of graphs. The problem is solved
in the last section of the paper.

2. ATHEOREM ABOUT COMPARABILITY GRAPHS

Let us look at the first (undirected) graph in the Fig. 1 Suppose we want

to replace undirected edges with the directed ones in such a way that the last
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two graphs (fork and cycle) are not subgraphs of the final directed graph.
The second graph shows that this can be done. Such graphs are known

as comparability or transitively orientable graphs. If we set a bit weaker

requirement to the final graph forbidding only the forks, we get a class of

graphs called pseudotransitively orientable graphs. It is clear that every
comparability graph is pseudotransitively orientable, but we also note that

a pseudotransitively oriented graph can contain cycles. Look at the third

graph in the Fig. 1. Surprisingly it turns out that if we can avoid forks in

the final graph, we can avoid cycles as well. This is the corollary of the

following theorem resulting from several statements proved by Ghouila-

Houri, Gilmore, and Hoffman.

Theorem 1. Every pseudotransitively orientable graph is transitively
orientable.

We give a proof which is not the shortest possible, but contains some

new ideas about the algebraic description of graphs. The main idea is based

on the modular decomposition discovered by Spinrad (e.g. [°]).

3. GRAPH MORPHISMS

A pair G = (V,E) is called a graph if E is an antireflexive binary
relation on V. The elements of V and E are called vertices and edges,
respectively. A graph G is called undirected if E' is symmetric. Instead of

(z,y) € F we sometimes use the short notation zy € E. In most cases we

assume that all graphs arefinite.
Let G 1 = (Vı, Eı) and G, = (V5 E,) be arbitrary graphs. We say that

the mapping V; D Va 1s a graph morphism 1f

f(z) # f(y) > [zy € Eı & f(x)f(y) € E2] (1)

forall z, y € Vi. Then we can also write G 1 i> G2. It is easy to see from

the definition that if G, —— G» and G 2 —+ G 3 are morphisms, then their

composition G 4 22 G 3 1s a morphism as well. We say that the morphism
f is amonomorphismiff is injective and an epimorphism iff is surjective.
This 1s correct from the viewpoint of the category theory.

Fig. 1. Graph and its transitive orientation.
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Let G = (V, E) be a graph and p an equivalence relation on the vertex

set V. We say that p is a congruence relation on G, if

zpz' ANypy A -(zpy) = [zy € E < x'y' € E)

for arbitrary vertices z,2',y,y' € V. It is easy to see that the kernel Ker f

of every morphism G s Hisa congruence relation on G. And reversely,
every congruence relation p on G is a kernel of some morphism G — H.

This is true because there is a unique graph structure on the factor-set V/p
such that the natural projection V' — V/p is a morphism. This graph is
called a factor graph of Gby p and is denoted as G/p.

Theorem 2. Let (A, E,), (B, Eg), and (C, E¢c) be graphs, A Ca

morphism, A — B an epimorphism, and Kerg © Ker f. Then there

exists a unique morphism B —, C which makes the following diagram
commutative:

A

l
B ", C.

IfKer g = Ker f, then h is a monomorphism.

Proof. As g is onto, there exists exactly one mapping h which makes the

diagram (2) commutative. Let us show that h is a graph morphism. Let

bı,b2 € B be vertices of B such that h(b;) # h(by). Because of the

surjectivity of g, there exists a;, a, € A such that g(a;) = b; and g(as) =

b, therefore f(a1) # f(az) and g(a;) # g(az). As f andg are morphisms,
the sentences

aa € Er S f(al)f(ag) € Ec,

0105 € Ea <> g(al)g(az) € Ep

are valid and thus the sentence blby € Eg <> h(b)h(b) € Ec is

valid as well. Indeed, h(b;) = f(a1) and h(b») = f(a2) because of the

commutativity of the diagram (2). So, A is a graph morphism.
If Kerg = Kerf, then his injective and therefore his a

monomorphism. []

One important conseguence of Theorem 2 is that if A 4y Bisa

morphism, then there exists a morphism - which makes the following
diagram commutative

A > B

„l T
A/Kerf — Im/,
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where 7 and ¢ are the natural projection and the injection, respectively. It

is easy to see that in case one of the three diagrams

is commutative, then the other two diagrams are also commutative. If f is

an endomorphism and makes these diagrams commutative, f is said tobe

a projector.

Theorem 3. For every morphism G —> H there is a projector G G

such that Ker f = Ker g.

Proof. Let G = (V, E) be an arbitrary graph, V/ Ker g —, V a choice

function, and V —> V/ Ker g a natural projection. Now we define

f :=Eor.

Since £ is injective, Ker f = Ker g and m o £ = 1. Therefore we get

fof = (Eom)o(Eor)
= šo(woš)o'n'
= Eolor
= fom
= .

It remains to show that f is a graph morphism. Let x and y be nodes of G

such that f(z) # f(y). Since Ker f = Kerr, we get also r (x) £ 7(y) and

m(f(x)) # 7(f(y)) because of the injectivity of f. And finally,

(ny)EE fraA
—

& (1(f(),7(f(v)))€E
s (f(z), fly) €E,

where E is the edge set of G/Ker f.

The most important consequence of Theorem 3 is that every congruence
relation of G is the kernel of some endomorphism of G and every factor-

graph of G can be embedded into G. Roughly, every factor-graph is a

subgraph. Indeed, if we have an epimorphism G —, H, then there exists

an endomorphism G > G such that Ker f = Kerg, and by Theorem

G+GC G—3G/Kerf mf—G

ANA NG | |
GTG‚ G —— G/Kerf, mM/ —G



121

2 there exists a monomorphism H —, G which makes the following
diagram commutative:

4. MODULES

Let G = (V, E) be an arbitrary graph. We say that the set of vertices

MC€ Vis a module of G (by Spinrad [°]) if for all z, y € M and 2 ¢ M

[zz€ E—> yz€ E|A[zz € E — 2y € E].

It turns out that each module is a congruence class and vice versa.

Theorem 4. A subgraph M C G = (V, E) is a module iff there exists a

congruence relation p ofG such that M is a p-class.

Proof. Let M be a module. We define the equivalence relation

BA | (z=y)V(eMAye M)} (3)

Clearly M is a p-class. It remains to show that p is a congruence relation of

G. Let us assume that xpx', ypy', and —(zpy). It now follows that —(z’py')
because of the transitivity of p.

If z = 2’ and y = ¢/, the statement of the theorem holds trivially.
Assume now that z £ z’. From (3) we may deduce thatz, 2’ € M. Since

—(zpy) and —~(z'py’), it follows that y,y’ ¢ M and, since ypy', we get
finally y = y'. The implications

zyeE — 1y €F,
gy eE —+ zyekE

are true because M is a module. This means that p is a congruence relation.

Let M CV be a subgraph such that there exists a congruence relation

p of G such that M is an equivalence class of p. Let z,y € M and 2 ¢ M.

Since p is an equivalence relation, we get zpy, zpz, and ~(xpz). Therefore

zz EE>yz €E

because p is a congruence relation. The proof of zz € E — zy € E'is

similar and thus M is a module. []

¢ 15¢

ol
H—h—>G.
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5. DESCRIPTION OF PRIME GRAPHS

A graph G = (V, E) is called prime if it has no nontrivial congruence

relations. Equivalently, the graph G is prime if the only nonempty modules

are G itself and one-element subgraphs of G. Let G = (V,E) be an

undirected graph. We define the relations K, and K_ in the edge set £
as follows:

K+ — {(a:y,zy)EEXElxzéE},
K = {{(zy,at)eEXE|yt¢ E}.

Letl' = K, U K_. In other words, the relation I' consists of edge-pairs of

two different types as depicted below:

Relations K, ja K_ are both reflexive and symmetric. Therefore the

transitive closure of I' is an equivalence relation on the edge set E. The

equivalence classes are called I'-classes. It is clear that two edges, e, €/,

belong to the same I'-class iff there is a chain of edges

/
€ =¢€p,€1,...,6g = €

such that (e;, e;+1) € T. The edges eo, ..., eg can be chosen in such a way
that £ is odd and (e;, ei+l) € Ky iff i is even. Roughly, we have a chain

€ = €g K+ €1 K_ €9 ... Ep_o K_ €r_l K+ €y = e'.

We write e = e'(T') if the edges e and e’ belong to the same I'-class. We

say that the graph G is strongly connected if it is connected and there is a

I'-class F' suchthat E = F U F~L,
If E' C F is an arbitrary subset of F, then the set of vertices

V(E"Y ={z | Jy(zy € E' Vyz € E')}

is called the vertex part of E'. And similarly, if V’ © V is an arbitrary
subset of V, then the set of edges

E(V')={zy|z,yeEV'Azy€E}

is called the edge part of V'. A graph G is called I'-connected if there is a

[-class F' such that E = V(F). It is obvious that for every I'-class F' the.

graphs (V(F), F) and (V(F), E(V(F))) are connected.
A pair (Vl, V3) is called a diclique of G if V; and V; are subsets of V,

and viv2 € E for every vı € Vı,v2 € V2, and vı F w2.
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Theorem 5. There exists no partition E = E, || Ey such that the graphs
G, = (V,E,) and G, = (V, Ey) are both symmetric (nondirected), T -

connected, and e, % ey(l') for arbitrary e, € E, and e, € E,.

Proof. Suppose there exists such partition. We can assume that F, is a

I'-class because by the definition of the I'-connectivity there is a I'-class

E] C E, suchthat V(E]) = V. Now, taking B} := V — E| D E,, we

get a partition £ = E][[ E} with a desired property. From E, © E, and
E, C E, it follows that the graphs GG, and G, are complement-connected.
Let us call the elements (edges) of E, red and the elements of F}, blue.

For every vertex v € V there is the partition of the vertex set V

V ={v} [Bi
where R, = {w | vw € E,} is the set of all red neighbours of v, B, = {w|
vw € E} is the set of all blue neighbours of v, and N, = {w | vw ¢ E} is
the set of all non-neighbours of v. The sets R,,, B, are nonempty since G,
and G, are connected. _

It is clear that the pair (8,, R,) is adiclique because if z € 8,,y € R,,
and zy ¢ E, then vz = vy(T'). This is a contradiction.

Notice thatif x € 8,,y € N,, and xy € F, then the edge zy is blue

because zv = zy(l'). Thus, every edge between B, and N, is blue and,
similarly, every edge between R, and N, is red.

Now we will show that there are only blue edges in the graph
(By, E(B,)). Indeed, if there is a red edge ¢’ € E(B,), then for every red

edge e ¢ E(B,) (there is at least one such edge) e = €/(T"), and therefore
there exist vertices z,y € B, and z € B, suchthatxy € E,, zy € E,, and

xz € E. This is correct because F, is a I'-class. The vertex z is not in IV,
otherwise there would be a red edge zy between B, and N,. Also, z # v

because zy ¢ FE and by definition vy € E. So, we can deduce that z € R,,
but then zz € E because (8,, R,) is a diclique. A contradiction. Thus we

can draw a very important conclusion:

Vv € VIE(B,)C ).

Let v,7,b € V be arbitrary nodes such that r € R, and b € 8,. Then we

know that rb € E since (R, B,) is a diclique. The edge 7b is not blue,
otherwise r € By and there is a red edge vr € E(B,) C Ep. Therefore rb

is red and we can infer that there are only red edges between R, and 8,,.
So, there are only red edges between R, and V — R, = {v} U B, UN,,.

Butif z € R,, then there is at least one y such thatzy € Ej (connectivity of

Gy), and therefore y € R, and zy € E(R,). The edge zy, however, cannot

be in the same I'-class with any edge e € F(V—R,,), but we know that there

are such edges because B, # (). A contradiction with the I'-connectivity
of Gip. This proves the impossibility of the partition. []

Theorem 6. If G = (V,E) is prime and E +# 0, then G is strongly
connected.
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Proof. Suppose G = (V, E) is prime and F' © E is an arbitrary ['-class.

Now we will show that V(F) is a module and therefore V(F) = V. Let

z,y € V(F),z ¢ V(F),and zz € E. The graph (V(F), F) is connected

and therefore we can find a sequence of vertices

T = . DO, Lly--.+), In = Y

such that z; € V(F) and xz;x;+l € F. We can prove now by induction

that yz € E. Indeed, oz = zz € E by assumption, and if z;2 € E,
then z;,12 € F as well. Otherwise we get (z;z;,1,;2) € [ which is

impossible because z ¢ V(F'). This implies yz € E. The proof of the

implication zz € E — zy € E is similar.

So, V(F) is a module with at least two vertices and therefore V (F') =

V because of the primeness of G. Let E, = F U F~'. Suppose E, =

E — E. # 0. Let F' C© Ej be a I'-class containing an edge zy € F.

It follows from the primeness that V(F') = V. Therefore the graphs
G, = (V,E,) and G, = (V, E,) are both symmetric, I'-connected, and

e, #Z ep(T) for arbitrary e, € FE, and e, € F,. This is impossible by
Theorem 5. It means thatE= F U F~! and Gis strongly connected. [

Theorem 7. IfG and its complement graph G are both strongly connected,
then G is prime.

Proof. If ) # M # V is a module, there is at least one vertex in V — M.

First we show that the subgraph (V — M, E(V — M)) is not edgeless.
Indeed, if it is edgeless, then forevery z € V — M thereisanz € M

such that xy € E because of the connectivity of GG. This implies, however,
that for every vertex y € M there is an edge yz € FE because M is a

module. Thus (M,V — M) must be a diclique and G is not connected.
A contradiction. Hence, we can assume that there is at least one edge in

(V —M, E(V —M)). .
Now we can prove thatE(M) = (). Suppose E(M) is not empty. As G

is strongly connected, e = e'(T') forevery e € E(M) ande’ € E(V — M).
So, there mustbe z,y € M andv € M suchthatzy € E, zv € E, and

yv ¢ FE, but this is impossible because M is a module. Therefore M is an

edgeless subgraph of G.

As M is a moduleof G as well, we can prove similarly that M is an

edgeless subgraph of G. This implies that M is a complete subgraph of G,
i.e. M is complete and edgeless at the same time. This is possible only if

|M|= 1. Therefore G is prime. [

These two theorems imply that a graph G = (V, E) is prime iff either

[V|< 3 or G and G are both strongly connected.
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6. PRIME GRAPHS AND TRANSITIVE RELATIONS

A binary relation S in the set V is called pseudotransitive if the

condition

zy € SANyz€e S=>rz€SVvzres

holds for every z,y,z € V. A graph G = (V, E) is pseudotransitively
orientable if there exists a pseudotransitive relation S such that £ = SU
S—l. Similarly, G is transitively orientable if there exists a partial ordering
T suchthat E=TUT 1

A graph G = (V, E) is pseudotransitively orientable iff zy # yz(l')
for every edge zy € E.

Theorem 8. IfG = (V, E) is prime, S is a pseudotransitive relation, and

E =BSUS™! then S is transitive.

Proof. Assume Sis not transitive. It follows from the primeness that .S and
S~l are the only I'-classes of G. Indeed, if zy € E and zt € E, then either

zy = 2t(T") or zy = tz(l'). Now define a ternary relation Z in V' such that

zyz € Z iff zy, yz, and zz belong to S. We say that the vertices z,y, 2

form a cycle.

Lemmal. If zyz € Z, then (zy,ty) € K, implies tyz € Z and

(xy,zt) € K_ implies xtz € Z.

Proof. Letus prove the first claim; the proof of the second one is similar. If

zryz € Z and (zy, ty) € K, then zy,yz, zz,ty € S and xt, tx & S by the

definition ofK. Asty € S and yz € S, it follows frompseudotransitivity
that either zt € S ortz € S. Iftz € S, then zz € S impliestx € SVat €

S, which is impossible. Therefore zt € S and then tyz € Z. This proves
Lemma 1. D 0

As S is not transitive, there is at least one cycle zyz and therefore

zy = yz(T'). But then there must be a chain of edges

Ty K+ tly K_ tlto K+ K+ tgte_l K_ t[Z K+ Yyz.

Now we can use the previous lemma to get the following chain of

implications

zyz € Z AN{zy,tly) €K, = tiyz €Z,

thyz €Z IN <tly,tlt2> eK. = tilz € Z,

titaz €Z A <tlt2,t3t2> €K+ = 302 EZ,

tete_l2 €Z A (tote_l,te2) €K- = thzz €Z.

The last sentence is obviously wrong. A contradiction.
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7. THE INDUCTION PRINCIPLE

A property A is inductive if for every graph G and congruence partition
G/p = {G1,..., G4} the following implication holds

A(G1) A A(G2) A
...

A A(Go) A A(G/p) > A(G).

A property A is said to be injective if A(G) = A(H) whenever there is

a monomorphism H — G and dually, A is projective if A(G) = A(H)
whenever there is an epimorphism G — H. From Theorem 3 it follows

that every injective property is projective. It is clear that if every prime
graph has the inductive property .4, thenall (finite) graphs have the property
A. If A is both inductive and injective, then obviously

A(G1) A A(G>) A ... NA(Gy) A A(G/p) & A(G)

and therefore we can prove the following lemma by induction on the size

of G.

Lemma 2. Ifproperties A, B are equivalentforprime graphs and are both

inductive and injective, then they are equivalent for all graphs.

Let us use the notation 7O(G) if G is transitively orientable and the

notation PO(G) if G is pseudotransitively orientable. It is clear that the

properties 7O and PO are both injective.

Theorem 9. The properties TO and PO are equivalentfor all graphs.

Proof. 1t is sufficient to show that 7O and PO are inductive. Let

Gbe a graph, G/p = {Gu,...,G¢} a congruence partition, and
the graphs G/p, Gy, ...,

G, be transitively [pseudotransitively] orientable.

Let Ty, ...,T;,T, be the corresponding transitive [pseudotransitive] and

antireflexive relations. Define the relation T as follows

T:= {{z,y) | Fi((z,y) z Za

where G — G/pis anatural projection. It is easy to verify thatT is indeed

transitive [pseudotransitive]. Therefore G has the property 7O [PO].
Thereby the properties 7O and PO are equivalent forprime graphs (by

Theorem 8) and they are both inductive and injective. Thus (by Lemma 2),
the properties 7 O and PO are equivalent for all graphs. []
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VÕRRELDAVUSGRAAFID JA LÕPLIKE GRAAFIDE

STRUKTUUR

Ahto BULDAS

J. Spinrad defineeris aastal 1982 moodulid kui teatava omadusega
alamgraafid ja töestas, et graafe saab mooduleid kasutades efektiivselt

dekomponeerida. Siin on töestatud, et tema meetod viib uut tüüpi graafide
morfismi möisteni, mis on graafide range homomorfismi teatav üldistus.
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