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Abstract. Nonstochasticformulation of the electron-transfer problem (via time-convolutionless gen-
eralized masterequations or Tokuyama—Mori approach) is argued to lead, for any clectronic system
with a site-local coupling to the bath taken into account up to the second order, to cquations pro-
viding a rigorous basis for the generalized stochastic Liouville equation model. Its application to

an asymmetric dimer shows that the usual transition from the nonactivated to activated (Arrhenius-
type) Marcus long-time reaction kinetics is obtained. Coherence cffects make, however, the usual

long-time markovian description of the populationkinetics based on the golden rule formula unjus-
tified.
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1. INTRODUCTION

Since the pioneering works by Primas ['] and Haken and Strobl [?]
(see also [*] for extensive discussion and further references), the stochastic

Liouville equation model (SLEM) has proved to be a reliable method

providing a qualitatively reasonable interpolation between coherent and

fully incoherent regimes of carrier (electron, exciton) transport. Because

the standard approach to the electron transfer in redox chemical kinetics

is based on usual markovian kinetic equations (Pauli master equations
with golden rule transfer rates) describing the incoherent transfer, SLEM

might serve as an ideal tool to scrutinize the chemical kinetics theory.
Soon, on the other hand, it became also clear that the basic assumption
of SLEM, i.e. the replacing of a true responsive thermodynamic bath

(phonons) by a nonresponsive stochastic field, is problematic. A

rederivation of the corresponding system of equations in [*] via time-

convolution generalized master equation (TC-GME) and the Born—Markov
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approximation in the interaction picture or via the second-order time-

convolutionless generalized master equation (TCL-GME) as in [°] (in both
cases taking into account properly quantum and responsive character of
the bath), however, leads (apart from some lacking symmetries among
coefficients) to the same system of equations. These equations (forming
a basis of the so-called generalized stochastic Liouville equation model
— GSLEM) admit, at least formally, the same type of parametrization as

known from [?] (see also, e.g., [?], the so-called Haken-Strobl-Reineker

model).
When derived as usual by expanding in powers of the electron coupling

to the thermodynamic bath, SLEM as well as GSLEM do not explicitly
contain polaron effects. In order to involve these and to keep the structure

of GSLEM, a new method has been devised in [* ’]. It allows working
with untransformed (to the small polaron basis) quantities like the bare

(undressed) electron density matrix p,,,(t), while the coefficients in the

corresponding time-local equations remain appropriately transformed. As

this type of theory is then sufficiently general as well as flexible for

scrutinizing the role of coherent effects in the electron transfer (reduction—-
oxidation chemical reactions), we shall generalize it here to a nonperiodic
situation to check the basic results of the standard chemical reaction theory.

2. HAMILTONIAN AND STARTING EQUATIONS

In this paper, we shall work with the standard Hamiltonian

H = He + th + He-ph7 (la)

H. = Z cma;‘„a„‚ + z Jm„a,f„a„, (1b)
m mn

Hon =Y huwyblby, (1c)
k

1
He—ph = — zz G'I:E hwiata,(bk— + bt ‹). (ld)

r -КVN &%

Here, é,„, Jmn = Jnm, Wrz» and Gš are the electron site energies, transfer

(resonance or hopping) integrals, phonon freguencies and carrier-phonon
coupling constants. Only one electron will be assumed throughout the

study. -
There is a lot of physics concerning the possibility of modelling the

electron transfer in, e.g., solutions, by this Hamiltonian. However, as it

is too complicated, we postpone the discussion to a next publication. Let

us only mention that the most decisive point concerns the fact that in real

situations, the electron interacts not only with phonons but also with virtual

Frenkel excitons (due to polarization of its surroundings) thus forming a

new quasiparticle — electron-polaron [*].
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One comment concerning the Hamiltonian, though is worth making.
Here, we fully refrain from the off-diagonal part of 11,,_d,,, (if any). So, like

in the original Marcus theory of chemical kinetics [** '], we take the bath

(solvent) not as an active medium, being perhaps also partly responsible
for some real transitions, but only as a passive (though quantum, i.c.

responsive) one hindering the transitions caused by transfer integrals in //..
but making simultaneously these transitions real owing to dephasing.

With our Hamiltonian (la-d) we first introduce an operator known from

the small polaron canonical (displacement) transformation:

1
— — n tS
—

_St
—

W zfi:zfl:Gialan(bE — b—i). (2)

Further, we shall assume the initial state (initial full electron-phonon
density matrix)

0(0) = e*Sal|vac)(vacla, @ pppe”?s, (3)

e_ß"ph
Pph =

W. (4)

Here, one should assume that the site designated as 1 in (3) is arbitrary in the

system; it designates the site where the carrier is initially located with the

polaron cloud (of the degree A) formed around. The degree A (being a real

number) may also be taken as arbitrary; the choices A = 0 or | correspond
to a no-polaron cloud and a small full polaron cloud, respectively. On the

other hand, higher (or even negative) values of A are not excluded.

Now, let us choose the projection superoperator

1 .
P...=Y al an————TrM(e*pprat ames

..),

© exp{ LG —b ›} (..) = Тобоы...). (5)Im = —> 1o \Og —o_g) ey (o)
= pp Pph+-.).VN%

Applying this projector to the Tokuyama—-Mori identity [''], choosing as a

set (column) of operators of interest the operators a} a,,, multiplying the

identity from the left by o(0) from (3) and, finally taking the trace, one

obtains for the carrier (single-particle) density matrix

Pl (L) = Tr(o(o)at,an) | (6)

the set of equations

ED (t) = X imo+ Л( (7a)dtpnm -

e

nm,qp /qp nm
°
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Here the inhomogeneous term

fam(t) = O, (7b)

provided that A and 8 in (5) are the same as those in (4) (as will be taken

henceforth). The coefficients, to the second order in He-pa, result

twnm,qp(t) = IQnm,gp + 1 - Smm,ap(t); (8a)

. i |
0%тар = ;l'[õpmönq(fm —6) + JpmOng — Лпабтр], (8b)

>-A
n m n

2° öflnm‚q„(t) = —t&mp(anfi ZWR(GE‘ — СЁ)(С—Ё + О—Ё)_
k

t

— [ X Mumulr)(ataval(r)ap(r))dr +O(G*%), — (80)

(а:“а„а:(т)а‚(т)) = Tre(ala.,e“:°'a;a,,). (8d)

Here, we designate the Liouville superoperators as

С... =Ц,. .н НЫ ], Loppoo = 2[Hecprr o] (9)
...—h +] e...—h еэ -]y e_ph...—h e-phy++ +

and the projector as

@ =l-Р. (10)

Our quantity My,.(7) in (8) then reads:

Mnm,w(T) = —wflm.vu('r) =

= Tr(e*Šppratase”*SLe'LE' OL. pmat,an)/(01 0.) (11)

and designates nothing but the second-order kernel of Mori’s [!?] theory
for the same problem or, up to the opposite sign, the second-ordermemory
function Wnm,vu(T) from the TC-GME formulation of the same problem.
One should add that the same equations may be obtained also starting from

TCL-GME as in [©].
By a direct expansion up to the second order in H,_,, we obtain

. .
A

m
1 oQnmgp(t) = —sz,,an—fi ZwE(G’E‘ - UG HTE

k

ELE
uv

k

x(GE[[l + np(hwp)|ek" + np(hwp)e™k7l— —
—Gy[np(hwi)ek™ + [1 + np(hwy)le™“k"])(alaual,(r)an(r))+
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Amn 1
r u

+N ZWE(G_E — G-E)f_z Z Jur(GE — GE)X
k r

x [[l + na(hwr)]e“K” — np(tuop)e”“ Katarat (r)an(7))+
Аmn 1

r v

+ ij‚;(a_‚;P» Jr(Gr — Gr)X
k r

X [пв(ТъшЁ)еішЁт — [1 + nß(hwE)]e_inT](a‚ta„af„(r)a„(‘r))} X

X (а:“а„а};(т)а‚,(т)) dr. (12)

(Here ng designates the Bose-Einstein distribution for phonons.)
Designating the eigenvectors and the eigenvalues of H. by |v) and E,,

respectively, (12) may be turned to the form

i »Snm,aplt) = =6,OAP(A, 1) — SmpdAL (A,)7, (13a)

JAP (A, t) = ‘ЩЕ 2(G™. —G" )xmn’_oN_wE—E -К
k

X> Gr D ()( |m)(plvz){ralr) x

r Vw2

? WT —WT
X exp{f—‘(E„‚ — Е„)т1+ пв(йо;)lе k" + np(hwg)e k ] dr—-

t )\
mh NZA -i)

k

1

X 3 GE Z (Еа — Bu)erleu)(vılm)(plez)(valr)x
r У,М

? WwrT —WT
X exp{‚;(E„‚ — E»)T [1 + np(huw;)]e k

— np(hwi)e k'] dr+

, A
m n m

+us„.„sl—v— ij‚;(G_lz - G":)(GE +GR). (13b)
k

Now, let the time ¢ exceed (after first performing the infinite bath limit

N — +OO in order to get rid of the Poincaré cycles) the time needed for

the reconstruction of the polaron cloud around the carrier, i.e. the phonon
dephasing time tp ~ h/AW, (with AW, being the width of the relevant

phonon band). What is really pleasant is that then (as it physically should

be) all the A-dependence disappears from :412,,,, ~(¢) simultaneously with

all the time-dependence. We obtain

1- 60тар(#) —i +4+oo= —Ong AL, — бтрА *, (14a)
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th
mAın =

YA= O)G2Olealr)rla)(vilm)(pla)x
k r vy,

1 hwg hwgJotEneleg)опар 1(14р
Е, —Ё„ +Вор +l6 В—En —Hwg +ie

Here, as usual, e is an infinitesimal positive quantity understood to turn 10

zero after converting, e.g, 1/NX; ...into an integral.

3. ASYMMETRIC DIMER AND THE MARCUS FORMULA

As already mentioned above, we omit completely the site-off-diagonal
part of the carrier-bath interaction. So, physically and speaking in

terms of virtual processes, the bath takes just a passive role in, e.g.,
electron transfer. This might seem to imply that there should be no

reason for the ‘up-and-down’ asymmetry in transition rates. It should be

stressed, however, that the bath in our treatment is nevertheless a quantum
(responsive) one, leading to spontaneous processes. Irrespective of the

fact that our sites are not the eigenstates of H., the latter processes do

consequently cause the above-mentioned asymmetry in the transition rates

as well as the long-time electron distribution, known since Einstein ['> !4]
who phenomenologically introduced these processes to get the above-

mentioned asymmetry.
Assume for simplicity the carrier Hamiltonian . in (1b) of the

asymmetric dimer by choosing

J|2=Jz|=J, € =€, €2=o. (15)

This Hamiltonian can easily be diagonalized. For t > {p, we then obtain

from(7), (8), and (14)

(0\ 0 0 1 - pš:.;(t)
4| pilt) a 0 0 —1 1

I.]

palt)
+

@| о2(O В1 ЕИ ©) |2O-1 1 0() e/ РО

0 0 0 0

0 0 0 0
Т|
-х-5520 -Y+iJ-2W -Ci-iae 0

|

-X ++J-2W —Y -+J- 2W 0 —-Ci++Ae

pš:.: (t)
| P 2 (1) (16

p(.'%)(t)
)

Pgl(t)
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Here

X = ReA); =

#J

=Z IGk — Gž (hw,; — 2\/(с/2)? + 12) x

k

€

x {3O + Эля(но)) + (/27 + ), (17a)

Y = КСАЪ =

mJ .
= yDGi -Gi (fu„‚2 - 2\/(е/2)? +J2) x

k

¢ .
x {_s[l + 2np(hwe)] + /(e/27 + ./2} , (17b)

С, = 2ReA}, = 2ReA}, =

п./? _
= 2;‘—l7 Z |G:2—G'§|2s (hwl; — 2\/(с/2)? + .]2) [l42np(hwg)], (17c)

k

] _
2W =

< Z |С — С& + 2np(huwy)), (174)
k

Ae =h У ш(О — G )(GE+ G (17e)-N
&

KN _k kk
k

In (16)-(17), we have also assumed for simplicity that the carrier is slow

compared to the bath, i.e. J is much less than the relevant phonon
bandwidth.

Now we designate

J = Jexp{-W} z J 1 - 2W. (18)

In W, one can easily recognize the Debye—Waller factor responsible for

the small-polaron renormalization of the carrier transfer (resonance or

hopping) integral .J; the accuracy in (18) is the same as that of the theory,
i.e. up to the lowest (second) order in the carrier—bath coupling. With that,
setting in (17) ¢ = Ae =O, X =Y, one can return to the symmetric case

discussed sufficiently in, e.g., [’]. п а slow carrier regime, the solution then

describes a veryslow left-right relaxation corresponding to the overdamped
oscillator behaviour. Without underestimating the importance of this case,

we are here rather interested in the limit of the pronounced asymmetry. In

order to understand the situ~ation, let us assume for a wllile a very small

and practically negligible J (tendency of suppressing „/ п (24) 1$ аl5O

strongly enhanced by increasing temperature) and small but not necessarily
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negligible J. Then the characteristic equation (determining the decay of

particular exponential solutions to (16))

-\ 2
J J € Е\?

—

2
— —— — — — ——— — — =т [x(c. г)? —4 (п) (Ci-2) -2(Y -Х)5е — (ь) ] 0,

Е = © + Ае (19)

has one root, ;

J\? xh
т^ —2 (š) I 6 - 6RO (hw‚;H+.12) .

k

. [1 + 2пв(2\/(е/2)? + JZ)] , (20)

which is small for small J. Under these conditions, the validity of the

Markov approximation is currently assumed. Let us therefore return to

the general case and exclude as usual the off-diagonal elements pf'z)(t) and

pi(t) from (16). This yields

d 137 d ea (1 —оМO = —а( =pe ol()™ —С. С.)--

л’ '
-С\т -

1 1
2 (5) [` ©° coster MB -т)—о(- т) «-

t

'Zž'/„ e" sin(er/A)[X +pt -1) +Y -plt-r)]dr. (21)

Now, because the validity of the markovian kinetics is one of the basic

assumptions in, e.g., the theory ofreaction kinetics [?], let us apply the usual

Markov approximation to (21). We obtain

d d

2P (1) = =2O() = Wicapld(1) — Ина (, — (22а)

with the transition rates

\ 2
+OO +OOWer=2(2 / e1" cos(er/h) dr-22Y / e!" sin(er/h)dr =

h) Jo h Jo

2
J C J E/h

=2l -
e - 7Y ———> 22b() erra Y mOr — ©

and

Л\? e J +

Wiy =2 (Ё) f e
1" сов(ёт /Ъ) ‹іт+2Ъ-Х/ e!"sin(er fh) dr =

0 0
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=\ 2 _
J С, J e/h

=2~ 2 .(n) (r +ОР ОСВ CO (22¢)
So far, we have assumed a slow carrier regime

|| < AW, (23a)

(in the opposite regime, the polaron renormalization would not appear in
such a simple manner or at all) and the long-time approximation

>t (23b)P

AW,

(a time large as compared to the bath dephasing time). For the validity of

the Markov approximation (22) to (21), one further needs

И- + Ин « С, (23с)

(condition of slow kinetics as compared to the decay of memory) and

{ » 1/С. (23d)

Solution to (22a) reads:

() = 1-pi(t) =

Wi +2 —(W, W.: (1) Wi
— +e~

Wi2+War )t [ 0) — —._______] .
(24

И--› + И
е()

И-з + И
(24)

Thus, the long-time asymptotics (equilibrium solution) is

() (1) И2

Pır ( ) p22( )
Wl(—2+W2(—-I

( )

and the rate of approaching it is

+\ 2
J 4C, J c/h

W Wocr =l7 ——427—S— (Х— Y). (26

Worth noticing is that (26) really turns (apart from the opposite sign) into

(20), provided that J term is negligible and (as usual) €/h > Cl. Under

these conditions

p(+00) _ Wıez V
(l)—

= E— —
= @

9 (27)
05 (+со) — И X

exactly as required by the equilibrium statistical mechanics in the absence

of any renormalization. Specifying, e.g., € > 0 (this specifies the direction

of asymmetry), we then obtain from (22b) and for |J| < €

Wl(—Z X nB(E) ^ C_fi(, (28)
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which is essentially the reaction rate ki of Marcus [?). Clearly, (28) can

immediately be compared with the result of [?] for the reaction rate

ki = Zexp(-AF*/(kgT)), (29)

where Z is ‘the collision number in the solution’ and AF* is ‘the

contribution to the free energy of the formation of the intermediate state

X* from the isolated reactants in the dielectric medium’. Also, our result

(28) yields the activated form. The difference between AF'* in (29) and the

corresponding change ofenergy (the latterquantity tobe identified with our

€ in (28)) is (minus) the product of temperature and the change of entropy
which changes only the pre-exponential termin (29). Concerning Z in (29),
we can hardly identify it with any quantity in our general result (22b). The

point is that

e our theory (being a strictly quantum one) does not involve such

vaguely defined (and in our context only semiclassical) notions as the

collision number in solution whose (e.g.) temperature dependence is

hard to estimate;

e our theory does not involve any notion like ‘reaction

path’, ‘an intermediate state’ or nonequilibrium thermodynamic
notions like ‘free energy of the intermediate state’ (irrespective of

possible justifications of the latter ['3]); it is purely microscopic
and automatically involves all possible (given by the Hamiltonian)
intermediate states which are in general taken as (up to an arbitrary
degree) nonstationary;

e our theory yields the exponential form (28) only at strictly defined

conditions (see the text above) which we consider to be physically
correct; in our opinion, this corresponds well to other more recent

results and conclusions ['® !7].

Anyway, though these results are encouraging, one should be extremely
careful. The point is that one of the assumptions underlying the application
of the Markov approximation to (21) and the very markovian character of

the kinetics assumed by Marcus [°], in particular (23c), is not fulfilled. This

may be verified by a direct inspection of (17a—). Thus, the markovian

description of, in particular, the electron kinetics — in fact, the basic

assumption of the usual reaction rate theory, to our knowledge never

questioned so far in, e.g. the chemical literature and currently used in

reviews, textbooks and monographs on reaction theory ['® !°] — is actually
invalid. So, the inclusion of quasicoherent effects, i.e. finite memory as in

(21), when treating the time-dependence of the electron kinetics, seems to

be inevitable.
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KOHERENTSUSEFEKTID KEEMILISTES

REDOKSREAKTSIOONIDES

Vladislav CAPEK

On nididatud, et elektroniilekande probleemi mittestohhastiline

formuleering (alates ajalise sidumita iildistatud juhtvdrrandeist
vöi Tokuyama—Mori ldhendusest) annab iga reservuaariga lokaalses

seoses oleva elektronsiisteemi tarvis vorrandid, mis on aluseks üldis-

tatud stohhastilise Liouville’i vorrandi rangele mudelile. Vorrandite

asiimmeetrilisele dimeerile rakendamise tulemuseks on pikaajaline
Marcuse reaktsioonikineetika iileminekuga mitteaktiveeritud tüübilt

aktiveeritule. Koherentsusefektide korral aga harilik kvantmehaanika

kuldreeglil pohinev pikaajaline Markovi asustuskineetika ei kehti.
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ЭФФЕКТЫ КОГЕРЕНТНОСТИ В ХИМИЧЕСКИХ

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЯХ

Владислав ЧАПЕК

Показано, что — нестохастическая формулировка — проблемы
электронного переноса (начиная с обобщенных управляющих
уравнений без свертки или подхода Токуяма-Мори) ведет к

уравнениям, лежащим в основе строгой модели обобщенного
стохастического уравнения Лиувилля для каждой электронной
системы, имеющей — локальную связь с — резервуаром. na

несимметрического димера в кинетике Маркуса в пределах больших

времен — наблюдается — переход — между — активационным M

неактивационным поведением. Эффекты когерентности приводят к

тому, что — обыкновенная — марковская — кинетика — заселения

электронных состояний, основанная на золотом правиле квантовой

механики, неоправданна.


	b10720984-1995-2-3 no. 2-3 01.04.1995
	Untitled
	EESTI TEADUSTE AKADEEMIA TOIMETISED
	FÜÜSIKA
	MATEMAATIKA

	XII JAHNI-TELLERI EFEKTI SÜMPOOSION
	Chapter
	STABILITY OF REGIOISOMERS OF ADDUCTS IN FULLERENES WITH C60Xk COMPOSITION
	Untitled
	Total energy (kJ/mol) of fullerene derivatives

	VIBRONIC THEORY OF HETEROLIGAND SYSTEMS APPLIED TO STRUCTURAL PHASE TRANSITIONS IN SOME H-BONDED MATERIALS
	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)

	ON THE JAHN-TELLER-DISTORTED HELICAL STRUCTURE OF CsCuBr3
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.

	WANNIER FORMULATION OF THE LEE-LOW-PINES TRANSFORMATION
	PSEUDO-JAHN-TELLER EFFECT AND OFF-CENTRE IONS IN CRYSTALS WITH SOFT LATTICE MODES
	INVESTIGATION OF THE FORMATION OF THE LOWTEMPERATURE MAGNETIC AND STRUCTURAL ORDER IN A JAHN-TELLER CsCuCl3 CRYSTAL BY THE EPR OF FRAGMENTS OF A MAGNETIC STRUCTURE
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).

	EQUILIBRIUM DISTORTIONS OF A DEFECT WITH AN INITIAL ELECTRON STATE OF t2 SYMMETRY: ROLES OF THE NONLINEARITY OF ELASTIC FORCES AND OF STATE OCCUPANCY
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state

	STATIC JAHN-TELLER MODEL FOR Cr2+ (d4) CENTRES OF TETRAHEDRAL SYMMETRY IN ZnS
	SILVER IMPURITIES IN CUBIC METAL FLUORIDES. JAHN-TELLER EFFECTS IN 4d95s1 AND 4d9 MULTIPLETS
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
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	THE BERRY PHASE OF ANE Oe SYSTEM
	DISTORTIONS OF VACANCY COMPLEXES IN n-GaAs AND THEIR REORIENTATION UNDER UNIAXIAL STRESS
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
	Untitled
	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Characterization of the samples under investigation

	PHOTOINDUCED INSTABILITY OF MnO4 MOLECULARDEFECTS IN POTASSIUM IODIDE
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.

	INVESTIGATION OF VIBRONIC INTERACTION OF Cu(II) lONS IN CsMgCl3 SINGLE CRYSTAL
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce

	DYNAMICS OF JAHN-TELLER IONS IN LAYERED OXIDES
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.

	ORIGIN OF GAP ANISOTROPY AND PHONON RENORMALIZATION
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5

	TWO-BAND ELECTRON-PHONON INTERACTION IN FULLERENE IN THE BOND-CHARGE MODEL
	Untitled
	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.
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	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
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