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Abstract. By employing the Fulton-Gouterman (FG) transformation recently a nonconventional

type of excited ('exotic') states in exciton-phonon systems was found, which is characterized by a

stiffening of the phonon subsystem. It is shown that the phonon part for these nonconventional

exciton-phonon states is well described by squeezed oscillatory functional forms. This can be

understood analytically by subjecting the FG Hamiltonian to a Fröhlich-type unitary
transformation. By applying the adiabatic approximation it is shown that the nonconventional states

correspond to the solutions which pertain to the upper adiabatic potential. The accuracy of the

adiabatic approximation, however, is remarkably below that of the Fröhlich-type and variational

approaches.
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1. INTRODUCTION

In a previous work excited exciton—[l)honon states of a new type (’exotic
states’) have been found numerically [*]. The most pronounced feature оЁ

these solutions with regard to the vibrational part ¢ (Q) of the wave

function (Q = vibrational coordinates) is their compressed, practically
undisplaced form (*squeezed states’) indicating a liberation of the exciton

from its tendency to self-trapping. ' |
The frame of the present work is the Fulton-Gouterman transformation

(%3], which exactly diagonalizes the original Hamiltonian in the excitonic

subspace. The evolving Schrodinger-like equations (FG equations) for the

oscillatory part of wave functions are subsequently handled by two

alternate sequences of two unitary transformations, respectively.
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In the first of these two alternate approaches, a variational ansatz is

constructed by means of a unitary product transformation which aims to

simulate the two dominant antagonistic tendencies ['] in the Fulton—

Gouterman Hamiltonian. In the second approach, a Frohlich—type
transformation [4] is used Гог а further transcription of the FG Hamiltonian
which then explicitly displays a stiffening of the effective oscillatory
potential. By means of this, direct analytical evidence is given that

squeezed oscillatory solutions pertain to this transformed Hamiltonian.
These two approaches are compared with the adiabatic approximation.

We find that they yield remarkably better results than the adiabatic

approximation, where nonconventional states are described by the
solutions pertaining to the upper adiabatic potential.

2. THE FULTON-GOUTERMAN TRANSFORMATION

The archetype exciton-phonon model (dimer),

Q 2. 2

H=_{(P"+Q ) -Т( +@) +po(i - HehHy, D

describes a two-level exciton system interacting linearly with a harmonic

oscillator of frequency 2. T denotes the excitonic transfer and D, the

exciton—phonon coupling constant. We introduce the reflection operator R

R'=R", К'=К R=RR,,
х @

R, Iy = In, R, I = , (2)

RQQ = -—QRQ, RQP = —PRQ,

where R, is the excitonic and Ro, the oscillatory reflection operator. By
means of the unitary operator

Up =—= {loo+ b + da - I R) (3)
FG ß Q

-

Hamiltonian (1) is diagonalized in the excitonic subspace (Fulton-
Gouterman transformation (FGT))

t
— (p=+l) (p=-1)

UrcHUpe = ЮНЕ +Н - (4)

In this manner the problem is reduced to the solution of purely

oscillatory Schrt')dinger-like equations (FG equations) of the form

Н(Р)ф(р — Е(Р)Ф P)
or

FG
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Q 2. .2

S(P +OY + DO - pTR, 19,7 (@) = ЕРФ (0). ©)
— —_——

self-trapping anti-self-trapping
tendency tendency

The total wave function of the original Hamiltonian then reads

1м) =Ё[ 56" (Q) +pINR 0P ()|. (6)

The Fulton—-Gouterman Hamiltonian exhibits two antagonistic
tendencies (’displacement’ and ’reflection’ or likewise ’self-trapping’ and

’anti-self-trapping’) which in their counteraction generate different species
of wave functions in different energy regions. This is exemplified in

Fig. 1, in which the numerically found solutions of the FG equation for

p =-1 are displayed. For low energies we find a species of FG wave

functions with an effective broadening ш О space, tantamount to a

softening of the phonon subspace. Each of these wave functions is

separated into two spatial parts which are mirror images of each other with

different weight. In addition to these *conventional’ types of states there is

another species which makes its appearance at higher energies only
(n=>s4, 57 in Fig. 1). For these states the interplay of the antagonistic
tendencies is such that there is only a very small self-trapping combined

with a narrowing of the spatial extension of the wave functions. This leads

to a hardening of the phonon subsystem. We may denote these

nonconventional states as ’exotic’ or as squeezed. As described in ['], the

existence of these states provides a good basis for the explanation of the

retarded luminescence phenomenon. Specifically the lowest states of this

sequence for each parity adopts the role of a bottleneck for the time

evolution of luminescence.

3. SQUEEZED DISPLACED TRIAL FUNCTION

The shape of the lowest nonconventional state in Fig. 1 suggests a trial

ansatz, which is a displaced and squeezed version of the ground state wave

function of the harmonic oscillator фо (Q) = 1:_“4ехр (—Q2/2). It can

be constructed by a product of two unitary operators

U, =exp(idP), U, = exp[-is (РО + ОР) ] (7)

such that

S(Q) = UU,(OQ). (8)
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With
-5., 2

Uf(Q) = f(Q+d), Uf(Q) =e f(e Q) (9)

the variational ansatz in Q space assumes the form

— - -

2

S(Q) =1 е’екр[-(е ^О+@) /2] =s(4s) . (10)

The two trial parameters, d and 5,2 are calculated by minimalizing the

energy uncertainty, 8((H2) -AH) ) = 0. If this is done, the wave

function assumes the form which is depicted in Fig. 2. Within the drawing

discernibility the result coincides with the numerically exact result for

the chosen model parameters D = 15 and T= 50. The energetic uncertainty

Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54

display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven

number of nodes. For p = +1 the situation is reversed.
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of the trial state is «/(Hz)— (H)2 = 0.04 Q. For a fixed value of the

transfer parameter T and ascending values of D the energetic uncertainty
of the trial wave function increases, whereas for a fixed value of D and

ascending values of T the energetic uncertainty decreases.

4. FRÖHLICH-TYPE TRANSFORMATION

Perhaps the most famous of all unitary transformations is the Fröhlich

transformation [*] with its application in the field of superconductivity,
where it is used to establish the BCS Hamiltonian. The transformation can

also be applied to our exciton-phonon Hamiltonian (1). In this case the

transformation operator is of a mixed exciton-phonon nature. However, it

is more favourable to proceed first to the Fulton—-Gouterman frame before

applying the Frohlich transformation. For that purpose, the original form

of the transformation operator has tobe transcribed into the Fulton—

Gouterman frame. Its form then pertains only to the phonon subspace:

Up=exp(Sp), Sp= aQRQ+ibQ+cPRQ+idP. (11)

Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest

nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10),
which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
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The parameters a to d can be chosen in such a manner that in the

transformed Fulton—-Gouterman Hamiltonian, UI.H,(,pc) U all terms linear

in the coupling constant D disappear (’Frohlich condition’). The

parameters are then given by

TD Da=s- ——— d4=-"" | p=c=o = (12
2(Т°-1) 2(Т° -1)

The transformed Fulton-Gouterman Hamiltonian assumes the form

na , 2 e
D* TD* 2

ripcUp=7)P +2 -PTR,+-— —pe Ry--4(T'-1) — 2(7?-1)

TD 3 2 4

-(TQ +pQßQ+in PRQ) } +o(р ). (13)

3(7° -1)

If we restrict the discussion to the terms up to the second order in D,

Expr. (13) displa(),;sn)a reflection symmetry and has parity-ordered

eigenfunctions ¢ ", where pas hitherto pertains to the parity of full

eigenstate (6), and ® = %1 is the artificial parity of the eigenfunction of

(13), which appears if anharmonic terms are neglected. Then the QZRQ
term is a positive or negative correction to the undisturbed 0? term,

depending on the product of the parities p and ж.

For x = —p, the Q2RQ term in (13) generates an increased effective

oscillatory frequency which corresponds to an elastic hardening and to a

squeezing of the oscillatory wave functions. This situation pertains to

unconventional (’exotic’) states.

For x = +p on the other hand, the Q2RQ term produces an elastic

softening and pertains to the states of conventional nature (broadened in Q
space). It is worth noting that in this case the correction term tends to

compensate the undisturbed 0? term and may produce a harmonic

instability. In this range of parameters the functional form of the

conventional states turns from a one-peak (anti-squeezed-broadened) form
to a one with two peaks (mirror images with different weight).

Thus, for a fixed value of p we find two distinct sequences of

eigenstates, depending on their symmetry properties in Q space. For

p = —1 the symmetric wave functions (Tt = +l, even number of nodes)
display squeezing and their energetic spacing is increased. The

antisymmetric eigenstates (t = —l, odd number of nodes) are spatially
broadened and energetically compressed. For p = +1 the situation is

reversed.

Neglecting the anharmonic terms in Hamiltonian (13), the lowest state

for p = +1 is a squeezed oscillatory function
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- (p=-1, n=+l) - —-1/4 ~ 2
фр = (rQ2/Q) exp[-(2/Q)Q°/2],

~ 1/
о = a{l+[72%]-/27-nl} *

(14)

and, reversing the Fröhlich transformation, we find a Fulton-Gouterman
wave function which for D =l5 and T = 50 practically falls onto those

drawn in Fig. 2 and cannot be discerned separately. The nondiagonality of

this wave function can be estimated by calculating the variance of the
terms of (13), which are of the third order in the coupling D. In Fig. 3 we

compare the results obtained by different approaches for energy
uncertainties.

5. ADIABATIC APPROXIMATION

We also demonstrate the description of the ’exotic’ states in the frame
of adiabatic approximation. In this approach unconventional states appear
as solutions pertaining to the upper adiabatic potential.

Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the

Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed
line: T= 50.
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In the adiabatic approximation the total wave function |‘Pa4 Q))is
written as a product of the form

¥, (x0 = К(0))№(0)), (15)

where the Q-dependent exciton state b( (x, Q)) satisfies the ’adiabatic’

eigenvalue equation

Q

S=T +@) + о0(04 -@)} bx =

= W(Q) x(x Q). (16)

This equation is solved by

К, ( 0)) = sinn (Q) - I+ cosn (Q) - I, (17)

b, (x, @) = cosn(Q) - Iy —sinm (Q) - ), (18)

whereby

.

] DO
sinn(o) = |5

— — ,*J * P
(19)

1 DQ
_ сosl] (О) = |- + — .*J 2 2P+D%

The Q-dependent eigenvalues W(Q) are given by

Q
W_(Q) = :|:-2-JT2 +D*Q?, (20)

where to the minus sign we assign the subscript ¢ (conventional) and to the

plus sign, the subscript # (unconventional). The oscillatory function
kb (Q)) is then defined by the equation

О 2 ‘а
-аа

GP ).@)=k,@) —2l
with the adiabatic potential

|а Q -

Vou(@ =207 +W,_„(О). (22)

Due to the inversion symmetry of V:du (0)
, Eg. (21) has the parity-

ordered eigenfunctions |®c(nu) (0));

(x) —

n
—Ralb (O)) = llb,(0)), I=4l. (23)
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In Fig. 4 the potentials V:du (Q) are depicted for various values ofD and

a fixed T. It is evident thatfor D > 0 the upper adiabatic potential VZd (0)

corresponds to a compressed parabola and its eigenfunctions can be

roughly approximated by sgueezed versions of harmonic oscillator wave

functions. ;

From Eg. (19) we note the sy mmetry relation

R
Q

sinn (Q) = cosn(Q)R
о'

Then a comparison of total wave function

(6) and adiabatic ansatz (15) with (18) reveals that the exact FG wave

functions |b()) for the unconventional states can be approximated by the

adiabatic oscillatory wave functions kb:n) (Q)) via

”Jl‘g 0 P=™) = cosn (0) - 6P (0)). (24)

Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе

coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the

upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed
eigenstates are connected with nonconventional states.
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The connection between the parity p of the exact total wave function (cf.

Eg. (6)) and the parity of the adiabatic oscillatory wave function

p ) (0)) is established by p = —. Thus the eigenfunctions of (21)

which have an even number of nodes and which pertain to the upper
adiabatic potential are approximative forms of the unconventional states

with parity p = —l.

The lowest of these states is calculated by a numerical diagonalization
of Eg. (21). From Fig. 3 we recognize that its energetic uncertainty is

remarkably larger than that of optimized variational ansatz (10).
Moreover, in the range of the small coupling values D, we find higher
accuracy for the Fröhlich-type approach than for the adiabatic one, even

for the case of the large transfer parameters 7, where the latter approach
should work especially well. This becomes lucid if we consider the

nonadiabatic potential

Q D
2

dD=3a (25)
T +DO

It is centred in the same spatial region as the wave function (DIS") (0)
,
I.e.

for finite coupling constants D the matrix element

*Jo™ @'V, )PP (0) a 0 (26)
always yields a non-negligible value, in contrast to the case of the ground
state wave function [s].
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MULJUTUDERGASTATUD SEISUNDITEKLASSIST
EKSITON-FOONON- JA JAHNI-TELLERI SUSTEEMIDES

("EKSOOTILISED'" SEISUNDID)

Mathias SONNEK, Hubert EIERMANN, Max WAGNER

Fultoni-Goutermani teisenduse rakendamise abil on leitud eksiton-

foonon-siisteemi ebakonventsionaalset tiiiipi "eksootilised" ergastatud
seisundid, mida iseloomustab foononalamsiisteemi jdaikumine. Foonon-

seisundid on histi kirjeldatavad muljutud ostsillaatorfunktsioonide abil.
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Analüütiliselt on see möistetav, kui rakendada hamiltoniaanile Fröhlichi

tüüpi teisendust. Adiabaatilise lähenduse kasutamine näitab, et need
ebakonventsionaalsed seisundid vastavad lahendeile, mis kuuluvad
ülemisele adiabaatilisele potentsiaalile. Adiabaatilise lähenduse täpsus on

siiski tunduvalt madalam kui Fröhlichi ja variatsioonlähenduse oma.

О КЛАССЕ СЖАТЫХ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В

ЭКСИТОН-ФОНОННЫХ И ЯН-ТЕЛЛЕРОВСКИХ СИСТЕМАХ

("ЭКЗОТИЧЕСКИЕ СОСТОЯНИЯ")

Матиас СОННЭК, Хуберт АЙЕРМАН, Макс ВАГНЕР

Применением —преобразования Фультона-Гутермана — найдены

неконвенционального типа "экзотические" возбужденные состояния

экситон-фононной системы, характеризуемые ростом жесткости

фононной подсистемы. Фононные состояния хорошо описываются

сжатыми осцилляторными функциями. Аналитически это понятно,

если подвергать гамильтониан преобразованию типа Фрелиха.
Применение адиабатического приближения показывает, что эти

неконвенциональные COCTOSHHS соответствуют решениям,

принадлежащим верхнему адиабатическому потенциалу. Точность

адиабатического приближения, однако, значительно ниже точности

фрелиховского и вариационного приближений.
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	ORIGIN OF GAP ANISOTROPY AND PHONON RENORMALIZATION
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5

	TWO-BAND ELECTRON-PHONON INTERACTION IN FULLERENE IN THE BOND-CHARGE MODEL
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.
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	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
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	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
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	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
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