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Abstract. Quantum emission of a dielectric plate, causedby optical nutation under resonance pulse
excitation is considered. The emission appears due to periodic time dependenceof the refractive

index and is connected with the transformation of the initial destruction operators of photons to a

linear combination of the final destruction and the creation operators. The spectrum of the emission

is described by a narrow Gaussian at £2/2, where f} is the Rabi frequency. The process considered

allows one to achieve remarkable conversion of the visible radiation to the infrared one.
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1. INTRODUCTION

In this communication we consider the emission of a photon which

follows optical nutation excited in a medium by a strong resonant light
pulse [" *]. The mechanism of the emission has a pure guantum origin and

is connected with a periodic change of the zero-point energy of the medium
EO in the time £. Such E£O(t) dependence arises from the corresponding
oscillatory change of the refractive index in time. The freguency of the

emitted radiation eguals 2/2 (where 9 is the Rabi freguency) and for strong
pulse excitation it can be in the infrared.

The mechanism of photon generation considered is connected with the

transformation of field operators in time: the initial destruction operators
are linear combinations of the final destruction and creation operators.
As a result, the initial zero-point state, being the zeroth state for the

initial destruction operators, is not the zeroth state for the final destruction

operators. It means that in the final state there appear photons. (Besides,
if initially there were some photons, then finally there appeared additional

photons with opposite wave vectors [?].) The mechanism mentioned has
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an analogy with the Hawking mechanism of the emission of photons by
a gravitationally collapsing star (so-called Black Hole emission) [*] and

with that of photon emission by an accelerating mirror or the registration
of photons by an accelerating photon detector (so-called Unruh radiation),
see e.g. [°7”]. It is also analogous to the quantum emission of a medium

under an abrupt change of the refractive index in time considered in [* s].
Another analogous process in solids is anharmonic decay of a strong local

vibration [?] (this vibration causes a quasiperiodic change of the zero-point
energy of phonons by that inducing the phonon generation).

2. RESONANT POLARIZATION

We consider a thin dielectric plate doped with atoms (ions), having
zero-phonon transition at wp, and suppose that the plate is excited by
a strong light pulse with the wave front parallel to the plate. We

use the second quantization representation in which the quantity under

consideration is the linear field operator 1. This operator satisfies the same

Maxwell equation as the classical field amplitude v [*]. The latter equation
reads [" ?]

д°
2x72 2P snt(w—CV)IPZ—no 'ä't'žl) . (l)

Here V* = д?/дх? + д?/ду?, ф = (l,z,y), e is the light velocity,
no is the refractive index of the non-excited plate, P™ is the nonlinear

polarization of the unitarea of the plate. In the case of resonant excitation
PY = N,SS:D/d, where N, is the number of atoms in the unitarea, d is

the plate’s thickness, S, is the £ component of the vectorof the quasispin
S satisfying the Bloch equation [ 2]

S=o>x S
,

Q= (kE,o,wy) , (2)

к = 2D/h, I is the strength of the electromagnetic field, /) is the dipole
matrix element. /2 has two parts: [ = Eo+ %, where o = EoCcos wol
describes the strong light pulse with the mean frequency wy, and v is the

weak part, which describes the considered field with the frequency w x

2/2, where ! = k& — 0 << wy. Analogously, the quasispin has two

parts: S = Sp + &. The quasispin Sy satisfies Bloch equation (2) with /2

replaced by FEy and equals (in rotating wave approximation (£2/wg)? << 1)
["2]

So = (sin © sinwypt, — sin O cos wyt, — cos @),

where
'

©= к/ ёо(т)ат.
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The vector 6 satisfies the equation

г = Похё + д), (3)

where Йо = (kEo,o,wo), õ0 = (0, kP cos O, k 3 sin O coswot). We have

to find the linear (with respect to 1) part of 0,.. From (3) it follows that

O = ——wäa‚ + wokp cos © — wokEo, . (4)

Let us consider the term ~ с,. In the rotating wave approximation % x

0+ = (Q cos wot, I sinwot,wo) one gets

o, = Qv + Ky sin O cos wot ,

v~ —Qo, — kPcosO coswot ,

where v = —o, sinwgt + o, coswgt. Solving the last equations, one finds

а, ^ шо 'кsin O sin wot

(upto terms ~ (£2/wp)?). One can see that the term ~ o, in (4) has the small

multiplier 2/wy; besides, it oscillates fast ~ (sin2wpt). Consequently, this

term gives very small contribution and can be neglected. This gives

о, ®шу'к сов©

(up to terms ~ (2/wp)?, N = кёо) апа

P™ = (N,D/d)(Sos +wg 'k 1) cos ©) . (5)

3. QUANTUM PARAMETRIC RESONANCE

In the case under consideration Eq. (1) has the plane wave solutions:

y = exp(ikr)p,, where @, satisfies the equation

г
,

&
— k? SEn(at2 +c )‹рь PayzPk COSO, (6)

p = 2D?N,/n3hwy describes the amplitude of time variation of the

dielectric constant. Here we take into account that the term w Sor does

not depend onz, y, and therefore does not contribute to the plane-wave
solution with k£ # 0. By introducing x,, = (1 + pcos )¢y, one obtains

е following equation for x,:

д2 wz
—+—m— |yxw=o.(öt2 +

1 + pcos6) X (
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One can see that x,, satisfies the wave equation with the quasiperiodically
time-dependent refractive index n ~ ny(l + cos ©)'/2,

Let us consider an almost rectangular excitation pulse with the duration

10 » Q! which reaches the plate at { = 0. At that § 15 constant for 0 <

t < toand 2 = Oelsewhere. Then Eq. (7) reduces to the one describing the

oscillator with locally periodically time-dependent frequency. In this case

the so-called parametric resonance phenomenon takes place: solutions of
(7) with w x 2/2 grow exponentially with time, see e.g. ["'°]. If one

chooses wx = Xw = exp(—wwt),! < 0, and supposes that the characteristic
duration of the ends of the pulse 7y, (19 << {,) satisfies the adiabatic

switching-on and -off conditions 7y » Q~', then forp << 1,1 > 10
one obtains к = Xw/(1 + p),

1 . .
Ха — ž[(e”'wto + e-’Yuln)e—tw! + (C'Yulo — c—'vulo)ctwl] ‚

Е>
, (8)

where

Yo = (wp/2)’ - (2 - 2w)* > 0. (9)

Let us return now to field operators. We are interested in time dependence
of the operator which satisfies the following initial condition:

z/; = exp(iEF— wil)ag, I<o. (10)

Here a; corresponds to the initial operator of the destruction of a photon

with the wave vectork. Taking into account solution (8) for x,, and bearing
in mind that the time dependence exp(—:wt) corresponds to the destruction

operators while the time dependence exp(iwt) corresponds to the creation

operators, we get

tß = eiEF[ÄECh(")'„t())e_iw‘ + i)%_sh(')’„to)cim] ,{ > l() ,
(l l)

which means that

i = ch(yslo)bz + sh(yolo)btz - (12)

Here Ä‚;and Ä‘_L‚; correspond to the final (! > (o) destruction and the

creation operator (we take into account that the space dependence exp(іЁт")
corresponds to the creation operator of a photon with the wave vector —k).

Note that in the case of parallel mirrors, normal to the mirrors wave

vectors k and —k should not be distinguished. For such k, formula (12)
corresponds to the squeezing transformation. At that, if v,y » 1, Ше

degree ofsqueezing is high. This conclusion is in agreement with ['!] where

it was shown that repeating jumps between two frequencies of harmonic

oscillator generate fast increasing squeezing.



378

4. QUANTUM EMISSION

Now one can find the number N; of photons with the wave vector k
generated by the unit surface of the plate:

Ni =< i|(b}by — atap)li >=

= sh¥(yuto)(1 + N + N'D) — sh(2y.to)Re < ilaza_gli >, (13)

where |i > is the initial state and N =< i|afai > is the number of

photons with the wave vector k in the initial state. The last term in (13)
differs from zero only for special-type two-photon-correlated initial states

and will later be neglected.
If the initial photons are absent (N‚%O) = 0), the spectrum of the

generated photons equals

W(w) = SNip(w) = mSwe™2sh*(yuto), (14)

where S is the surface of the excited area of the plate, p(w) = mwc=2 is the

density of modes. If Q = Ntop/2 » 1, the shape of the spectrum of the

generated photons is a Gaussian with a small width:

Q 2t2
W(w) ~ Zr—z—c——zs—cxp [Q — —Q—O(w — 9/2)2] . (15)

Here we take into account that for d ~ A = 2cQ~! the amplitude of the

dielectric constant p ~ fC, where f < 1 is the oscillator strength of

the resonant transition, C' is the relative concentration of resonant atoms

(C < 1). Therefore the dispersion (~ width) of spectrum (14) is small:

o~ fQC/BQ'? << Q2.
If the excitation pulse is not a rectangular one, in (12) the pulse

duration o should be replaced by toefs, the duration of resonance

lw — /2] < с. Supposing the pulse has a Gaussian shape, one gets
Q = Doz exp(—(l/2t — t/to/2)?) and & ~ (UnazfC/toess)'/?. Equating
Amaz — N = 20, one finds toes; v to(fC/o)"'5, and @ = (o)YS-
SM

The total number of the generated photons is of the order

xfCSQ? QNtot ~

—Bc2Ql/2
е° . (16)

One can see that NV,,; essentially depends on the amplification parameter
@ ~ QoessfC. To estimate ) and N, we take a light pulse ~ 1J with

the duration ¢ty ~ 1077 sec. Then for S ~ 0.01 cm?, one gets @ ~ 3 - 102

sec™! and d ~ 102 cm. Taking now fC = 1073, one gets Q ~ 35 and

Nyt ~ 10'3. For a twice higher concentration and the same {ме get a



379

nonrealistic value Миг — 10?® (from the energy conservation law it follows

that here N,,; cannot exceed 10?'). This means that, in fact, the working
thickness is less than ~ A.

Above the existing variation of the zero-phonon transition, frequency
wg from centre to centre was not taken into account. This variation (which
is called inhomogeneous broadening) leads to the variation of §). One can

neglect this variation if it remains smaller than o. Taking into account that

O = (k2€2 + A?/16)'/2, where A is the variation of wy, one finds that the
effect of the variations mentioned is negligible if

(A/Q)? << 4fCQ™'2. (17)

In good crystals A — 10'%° — 10'' sec7! and in the considered case of
0~ 3-10"2sec™!, Q = 35, fC = 1073 condition (17) is fulfilled.

Above the effects connected with the spontaneous emission of the

excited atoms were not taken into account either. In the case considered

these effects are weak, while the energy loss due to the emission

(~ hwoNeytoesy ~ 1073 ], у — 108 sec™! is the radiative decay rate,
Ne ~ 10'¢ is the number of atoms in the excited volume Sd) is small in

comparison with the energy of the macroscopic polarization oscillations

(~ 1 ). |

If Ng) # O (i.e. there were initial photons with the wave vector

Ёо)‚ then, in addition, NS:)shz('ywto) photons with the wave vector Ёоand

the same number of photons with the wave vector —ko will be generated.
This means that a) initial photons enhance the photon generation process

considered; b) the creation of photons with the opposite (to Ё‹‚) wave

vector takes place. We call the latter process a dynamical phase-conjugated
reflection (analogously to the corresponding static nonlinear optical process
[! '!3]; see also [?], where the dynamical process was called photon—-
antiphoton conversion). We note also that the processes mentioned

(~ N'%O) + NSOE)) allow us to use a resonator to promote the photon
generation process considered.

Finally we note that inversion oscillations in a dielectric medium affect

the phonon system and therefore can also cause the generation of phonons.
Expression (14) obtained here holds also for the spectrum of generated
phonons, if one replaces the oscillator strength f by the relative change of

the elastic constants on electronic transition and the photon density ofstates

p(w) by the phonon density of statesp,(w). The latter is much larger than

the former one (ppn(w) » p(w)). On the other hand, the feedback is much

easier to achieve forphotons than forphonons. Therefore, it depends on the

experimental conditions, which processwillprevail.
We may conclude that the considered quantum emission caused by

the optical nutation allows us to achieve remarkable conversion of visible

photons to the infrared ones.
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OPTILISE NUTATSIOONI KVANTKIIRGUS

Vladimir HIZNJAKOV, Natalja IVANOVA

On uuritud dielektrilise plaadi kvantkiirgust optilise
nutatsiooni korral, mida ergastatakse resonantse valgusimpulsiga. Kiirgus
tekib tiéinu murdumisniitaja perioodilisele muutumisele ajas, mis muundab

footonite algoleku tekkeoperaatorid 16ppoleku tekke- ja kaooperaatorite
lineaarkombinatsiooniks. Kiirgusspektril on kitsa Gaussi joone kuju
keskmise sagedusega 2/2, kus € оп Rabi sagedus. Vaadeldud protsess
lubab miirgatava efektiivsusega muundada nihtavat valgust infrapunaseks.
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КВАНТОВОЕ ИЗЛУЧЕНИЕ ПРИ ОПТИЧЕСКОЙ

НУТАЦИИ

Владимир ХИЖНЯКОВ, Наталья ИВАНОВА

Рассматривается квантовое излучение диэлектрической пластинки

при оптической нутации, возбуждаемой резонансным импульсом
света. Причиной излучения является периодическая временная
зависимость показателя преломления, приводящая к преобразованию
начальных операторов рождения фотонов в линейную комбинацию
конечных операторов рождения и уничтожения. Спектр излучения
имеет форму узкой гауссовой линии со средней частотой €2/2, rue

Q — частота Раби. Рассмотренный процесс позволяет с заметной

эффективностю преобразовывать видимое излучение B инфра-
красное.
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	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5

	TWO-BAND ELECTRON-PHONON INTERACTION IN FULLERENE IN THE BOND-CHARGE MODEL
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.
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	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
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	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
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