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Abstract. Relaxation of a strongly-excited local vibration caused by cubic anharmonic coupling
with phonons is considered. The strong vibration is described in theclassical limit while the phonons
are considered quantum-mechanically. In this approximation the effect of the strong mode on

phonons consists in the time dependence of elastic constants. As a result the zero-point energy
of phonons also changes in time, causing the creation of phonons. The mechanism of phonon
generation has an analogy with the Hawking mechanismof the Black Hole emission. The proposed
theory allows a description of the two-phonon relaxation of the local mode for an arbitrary cubic

anharmonicity and providesa nonexponential decay law for the initial relaxation stage. For the weak

anharmonicity the decay law obtained is in agreement with the one given by quantum perturbation
theory.

Key words: anharmonic interaction, local mode damping, phonon generation, Hawking
mechanism.

INTRODUCTION

Electronic transitions in vibronic systems are often accompanied by
strong excitation of local vibrations. Time evolution of such vibrations

is determined by anharmonic interaction with other vibrational modes.

The interaction causes an excitation of these modes and a local mode

damping. In this communication, we propose a theoretical description of

this damping process.
An essential peculiarity of the problem under consideration is the high

degree of the initial excitation of the local mode. In this case the standard

quantum perturbation theory may not be applicable for the mode damping.
The classical description is not applicable either, as the initial state of
the modes which became excited on the damping of the local mode, is
nonclassical (at least at sufficiently low temperatures). A possible approach
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to the problem is to use the classical description ofa strongly excited local

mode and the quantum description of all other, initially nonexcited modes.
In such an approach the effect of the classical motion of the local mode on

other modes consists in the time dependence of elastic constants.

Here we will consider the cubic anharmonicity ~ z;z;z;, with x; being
a classical time-dependent coordinate of a strongly excited local mode.

In the case considered the zero-point energy of the system changes in

time, causing the creation of real phonons. The underlying mechanism
of phonons’ generation has an analogy with the Hawking mechanism

of emission by a gravitationally collapsing star (so-called Black Hole

emission) [’ 2] and with the mechanism of the emission of photons by an

accelerated mirroror the registration of photons by an accelerated photon
detector (so-called Unruh radiation), see e.g. [77°]. In all these cases

the time dependence of the zero-point energy causes a transformation of

the initial destruction operators to the linear combination of creation and
destruction operators in time. As a result the initial zero point state, being
the zerothstate for the initial destruction operators, is not the zerothstate for

the final destruction operators. It means that in the final state there appear
photons (phonons).

In spite of the analogy mentioned there are still some essential

differences in the problem considered and in the Hawking and the Unruh

problem. The time dependence of the zero-point energy is quasiperiodic in
our problem, while it is aperiodic in the Hawking and the Unruh problem.
The physical reason of the time dependence is also different: in our case it
comes from the anharmonic interaction of phonons with a strongly excited

mode, while in the Hawking and the Unruh problem it is associated with

a nonuniform reference frame in which the quantum field is considered.

Below we will show that the considered mechanism of a local vibration

relaxation in a weak coupling limit gives the well-known result of the

quantum perturbation theory for the two-phonon anharmonic decay. The

proposed theory allows also the description of the mentioned relaxation for
an arbitrary cubic anharmonic interaction.

1. EQUATIONS FOR COORDINATE OPERATORS OF PHONONS

In the case of anharmonic interaction, V; =
1 3., w;z;zoz, with the

local mode coordinate z; being a function of ¢ žz, = O(t)), the phonon
coordinates z;, zw satisfy the following eguation of motion:

2

'a—gf;?(t—)‘ + w‚—zx‚-(t) + Q(t) Zw;‚-:m‚-:(t) =0 ; i, i' = 1,2, „.М. (l)

Here w; is the frequency of the phonon z, N is the number of phonon modes

(N isof the order 10?*). We suppose that Q(t) = Ofort < o,and О(1) >0
for t > 000. The first condition means that the local mode was excited
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att = 0, the second one accounts for the local mode relaxation. The

interaction constants w;;» can be factorized as follows:

т

Www = (eiwei') = z EinWnn! Ei'n! > zeinein' = Õnn! -

n=o t

Неге ng is the numberof the configurational coordinates contributing to the
considered anharmonic interaction. Usually ng is small (ny << N).

Equations (1) have the same form both in the classical and in the

quantum theory; in the latter z; are linear operators (r; = ;). These

operators can be presented in the form

ži(t) = (g:(t)ai + g()af )(h/2w:)'? (2)

where g;(£) are the solutions of a set of classical equations of motion

д? а;( w; \/2T 8 +а( + 0(0 Xlewen)get) (2) =0 @)

satisfying the initial conditions,

gi(t) = exp(—iwit +ip;) , <O,

; are arbitrary phases (final expressions should be averaged over ), a;,
and a} are linear operators obeying the usual commutation relations

[&ё;] =6;
, [ai,oo] = [a],a}] =O. |

These operators have the meaning of destruction (d;) and creation (a})
operators of phonons for ¢ < 0, i.e. before the local mode excitation.

The system of differential equations (3) can be presented in the

following integral form:

. t

gi(t) =е“ + Е(Ё;Шёді)[) sin(w‚-(t — T))Q(T)g,'I(T)dT , (За)

(& = е;/\/0;). By using an iteration procedure, one can find the following
solution of these equations:

‚ t

gi(t) = e +/О drsin(wi(t —7)) Y (@&Du(r)En) . — (4)

Here the no x no matrix D;(7) satisfies the following Volterra-type integral
equation:

Di(7) = Q(1)w [lc'i‘”‘T +/0 dr'G(r — T')D,-(*r')] , (5)

I is the no x no unit matrix, G(r) is the no x no matrix with the elements

Gnlnz(T) = za'm—é,'„z sin(w‚-'r) (6)

being the Green’s functions oflocal dynamics. This matrix function can be
calculated by standard methods of lattice dynamics [* ?]. In an important
case of the local mode’s coupling with a single configurational mode

(по = 1) the matrices D and Greduce to usual one-dimensional functions.
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2. TIME-DEPENDENT HAMILTONIAN OF PHONONS

With allowance made for expression (2) the Hamiltonian of the phonon
system can be presented in the form

Й, = Но+ У,

where

^ 1
Ho = žZhw,-[a.-(t)(zä:fä,— +)+foa7 +Afooo], MM

» hQ(t
. .l gy A . ()2

v =290 S (@)(1) +7Eg+о() ,
®

1
21:

]
22-

ei(t) = ‘2'(|9i(t)|2 +wG, i)= ž(!l.'z(l) +w2 (1) - 9)

The Hamiltonian Й‚, сап be diagonalized by the Bogolyubov-type
transformation. Here this transformation will be carried out in two steps:
first we diagonalize Ho and then //,.

ITo is diagonalized by the transformation

& = pA + viA}

where A; and Ä‚?L are new creation and destruction operators, satisfying the

usual commutation relations,

mi = [l+e:/ri)/2]77, (10)

vi = (f/lf)e/ri — 1)/2]'°7, (11)

ri= (& — 147 (12)

In the new representation Ho and V have the form

. ка 1
ito(t) = Shai(t) (AF Ai+ 5) »

^ 1 ^^

V(t) = ZhQ(l)Z(E;wEfl)&fg ›

where w; = ор 9; = бч + JV7, Ё‚- = _ä‚-Ä,— + ä‚'Ä‚* Considering

Gi = &(h/25;)"?/|g:| as new coordinate operators, the Hamiltonian //,
can be presented as follows:

Hp(t) =

> z,: —h

W
+ ;|+ > š;(ch—lf(t)chv)q,-q,v . (13)
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Here

Bnn’(t) = Q(t)cz(t)wnn' ,
(14)

en = eni ” 1g,()I/C(), (15)

C) = > eiril7(o]. (16)

Hamiltonian (13) can be diagonalized by the methods of local dynamics
(see, e.g. [*]). Here we use these methods in the secondary quantization
formulation given in [°]. The diagonalization is achieved with the operators

^ 1 Ct] _

^ л;

+

which leads to
{

B,(1) = Shy() (bj’b,- + ž) . (18)
j

Here 2;(t) are new frequencies satisfying the conditions

€lin€lin’ €2sn€2sn’
-za L za D (19)

1 J ‘ 2 J ‘

c;; is the orthogonal matrix of the Dushinsky rotation, which in the

considered case is equal to

(e„B€2 )
Cij = 'Õ?j'w%' ) (20)

3 %

e2; is related to ej; Бу Ше "го!апоп" transformation e2; = >;Cijeli; NO

explicit expression for e2; is needed below.

3. EQUATION FOR STRONG VIBRATION

One can see that the considered problem of the relaxation of strong
local vibration reduces to a system of quantum oscillators with time-

dependent frequencies and destruction and creation operators. The latter

are the following linear combinations of the initial creation and destruction

operators:
‚

bi(t) = D_(M;(t)a: + 7ii(t)a]) . (21)

Here сс
й; = 2(s'—9l')'/—2[(& + )pi + (@i — O]

— Cij — —

Vij = —W[(wi -Aj)i +(oi+;)u].
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D;;, as well as ı; remain finite for all / > 0 ineluding / > oo (when

Qi(t) — 0). This means that the initial zero-point state |0 >, satisfying
the condition «;|0 > for all 7, does not remain the zero-point one for / > 0.

The total number of phonons at the time / in this state equals

N(t) = X < O)b()]0 >= » [so (22)
j i

The total energy of the generated phonons is

Lpn(l) = Zhn,-(t) < Olbf(i)bj(t)lo >=

j

h 2_—l — — 2| =

7 2165 l 1@ +Q)+G — Ор (23)
%

Substituting expressions (10)—(12) into (23), one gets

1
Ernlt) = Zh Z o[2wie; + (3 — @7)(e; — 2Re fi)/riõ; — 2;] .

1)

Another contribution to the energy of the system comes from the time

dependence of the zero-point energy:

Eo(t) = _hQ(t)/2 =) hw;/2.
j i

Adding Ey(1) to £, (1) and taking into account that according to (19)

Zcž—(nš —w?) = (exßew),
;

we find (see also (10)-(12))

y
hB(t) =

> Zualeill)- 1)+
h

_

+ ) > eiwei)g(l(ei(t) —Re Si(t))/wiri(l) . (24)

This energy should be averaged over the initial phases ;. Besides,
supposing that the characteristic time of the local mode relaxation

essentially exceeds its period, one can average /7(1) over the local mode

period. As a result, the last term in (24) tends to zero and one obtains

the following formula for the energy of the phonon system at the time
moment 1:

—

P(t) = h wiE(t)— 1) =
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t 2

= 25w |[ dr(eiDe(r)ente] )
й 0

(here we take into account that sin(w;(t — 7) can be replaced by
(27)7! exp(iw;(t — 7))).

__

Total energy of the systemconsists of the energy of the phonon system
E(t) and of the local mode energy:

1 .

Ei(t) =

S (wiQi(t) + Qi(1)) - (26)

According to the energy conservation law

E(t) = Eı(0) — Eılt) . (27)

Substituting (25) and (26) into (27), one obtains an equation for the time-

dependent coordinate Q(t) of the local mode. This is a transcendental

equation, as D;(t) depend on O(t) via integral eguation (5). In the case of

fast relaxation, comparable with the local mode freguency w;, one should

also allow for the second term ~ O(t) in (24).

4. WEAK COUPLING OF THE LOCAL MODE WITH PHONONS

As a simple example, we consider a two-phonon damping of the local

mode in a weak coupling limit. In this case D;(7) = Q(7)wexp(—iw;7)!/
(see Expr.(s)), which leads to the exponential solution of Eq. (27). Indeed,
in the case of an exponential decay, Q(t) = Qocoswt - exp(—~t/2),
Y << wy, one gets

1
E(0) - Bi(t) ~ JufQ3(l - ™),

—
hO2 t : 2

E(t) x &Z(e;we;:)zwg—'l V dTe‘(“’"“’““’"')T“'"/zl -

16
<5

0

^ inw; [/ш… dw(e(w)we(w; — w))z] (I—e™)
16y %

Lo
’

where

En(w)En (w) = S wenienid(w — w;)

Wm 1s the maximal freguency of phonons. Consequently, in this model the

decay is exponential with the rate

h [wm

y gw_:./o dw(e(w)we(wi — w))*.

This result coincides with a well-known result of the guantumperturbation
theory for the two-phonon anharmonic decay of a mode at T = 0 ['].
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5. ARBITRARY COUPLING; NONEXPONENTIAL DECAY

The proposed theory also allows one to find the two-phonon decay law

of a strong local mode beyond the perturbation limit. This will be shown

for the case when the local mode interacts with a single configurational
coordinate (ng = 1). In this case integral equation (5) can be presented
in the form

Di(r) = wQ(T)e77[l+w / dre“ Gr — тl)@(т,) +
0

. T TI

+ w e“"”/o dn/o drG(Tt — 7)G(ly — Tz)CJ(n)l),—(Tz)] ‚
(28)

where w is the interaction constant. We take (Q(7) = Qo,cosw;T and

suppose that the amplitude (), slowly changes in time (compared to w;). In

this case the second term in brackets in (28) can be omitted as it oscillates

fast. Neglecting the fast oscillating terms also in the third term, one gets an

approximate equation

I),‘(7‘) =~ vTCi(wl—w‘)T+o3[) dT| /
!

(IT2o(T—T|)(J’(T|—Tz)ciw‘(r—n)l).'(’rz)
0

(29)
where v, = wQo,/2. Asthe dependence of v, on 7 is low, it can be omitted

when solving (29), and restored in the answer. In this approximation the

solution of (29) can be found by means of the half-axis Fourier transform:

Difw) = [ et Dir)dr =

0

= —iv[w +wi — —зЕ + v*Di(w)G(w)G(w — wı) ,
Е— 0, (30)

where
o

G(w) = / eTG(T)dT . (31)
0

Consequently,

Di(w) = —iv[(w +о;— wı — te)(1 — v’G(w)G(w — wı))]”' (32)

and
|

Dir) =o= [ dwDi(w)e*" =(=5[ doDi(w)e

‚итеі(щ—шд)т еішдт
33

1 - 026(w;) G(wi —w)
— zk: R (wr)(wi +wr — wı)

*
(33)

where R,(w) = v-dG(w)G(w — wı)/dw, wr = Re w + 11 are the upper

poles of the resolvent 1/(1 — v2(/(w)G'(w — wy)). The number and the

position of these poles depend on the local mode amplitude ()y,: for large
(Qo- these poles are present, while for an amplitude smaller than the critical

one (Qor < Q) they disappear.
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Here for simplicity we consider a case when only the first term on the

right side of (33) is present. In this case the differentiating of (27) over {

gives
dEi(t)
ma (34)

dt

where |

(1)~
T
[ dwp(w)p(wı —w)

(35)y} o—— _— }
8 Jo |l-— w?Ei(t)G(w)G(w — wı)/2w2|

p(w) = &(w) is one-phonon density function. One can see that for a

small energy E; the decay rate y(t) = 40 = const. and the decay is

exponential, but for large F; the rate depends on E;. Consequently, the

decay law of the initially strongly excited local mode is superexponential,
becoming exponential in the final stage. In the case of a sufficiently strong
initial excitation, the poles w;. appear in (33) and the decay gets additional

channels.

We conclude that according to the proposed theory the relaxation of

strong vibration is associated with time dependence of the zero-point
energy of the phonons interacting with vibration. The relaxation is

nonexponential. Only in the final stage the relaxation becomes exponential.
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HAWKINGI PROTSESS VIBROONSUSTEEMIS: TUGEVA

VONKUMISE RELAKSATSIOON

Vladimir HIZNJAKOV

On vaadeldud tugevasti ergastatud lokaalse vönkumise relaksatsiooni,
mille tingib anharmooniline vastakmöju foononitega. Lokaalset

vönkumist on käsitletud klassikaliselt, foononeid aga kvantmehaaniliselt.

Selles lähenduses pöhjustab vastakmöju tugevasti ergastatud vönkumisega
foononsüsteemi elastsuskoefitsientide aegsöltuvuse. Tulemusena muutub

ajas foononsüsteemi nullenergia, pöhjustades foononite genereerimise.
Foononite tekkemehhanism on musta augu kiirguse Hawkingi mehhanismi

analoog. Käesolev teooria võimaldab kirjeldada lokaalse vönkumise

kahefoononist lagunemist meelevaldse kuubilise anharmoonilisuse korral

ja näeb ette mitteeksponentsiaalset lagunemist võnkerelaksatsiooni alg-
etapil. Nörga anharmoonilisuse korral ühtib lagunemisseadus
kvantmehaanilise häiritusteooria vastava seadusega.

ХОКИНГОВСКИЙ ПРОЦЕСС В ВИБРОННОЙ СИСТЕМЕ:

РЕЛАКСАЦИЯ СИЛЬНОГО КОЛЕБАНИЯ

Владимир ХИЖНЯКОВ

Рассматривается релаксация сильно возбужденного локального

колебания, обусловленного кубическим ангармоническим взаимо-

действием этого колебания с фононами. Сильно возбужденное
колебание описывается классически, а фононы — квантовомехани-

чески. В этом приближении сильное колебание приводит к

зависимости упругих постоянных фононной системы от времени. В

результате нулевая энергия фононов также изменяется во времени,
что вызывает генерацию фононов. Механизм генерации фононов
аналогичен хокинговскому механизму излучения Черных Дыр.
Предложенная теория позволяет описать двухфононный распад
сильно возбужденного локального колебания при произвольной силе

кубического ангармонизма и предсказывает неэкспоненциальный

закон распада такого колебания. При слабом ангармонизме

полученный закон распада совпадает с законом, даваемым квантово-

механической теорией возмущения.
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	Untitled
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Characterization of the samples under investigation

	PHOTOINDUCED INSTABILITY OF MnO4 MOLECULARDEFECTS IN POTASSIUM IODIDE
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.

	INVESTIGATION OF VIBRONIC INTERACTION OF Cu(II) lONS IN CsMgCl3 SINGLE CRYSTAL
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce

	DYNAMICS OF JAHN-TELLER IONS IN LAYERED OXIDES
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.

	ORIGIN OF GAP ANISOTROPY AND PHONON RENORMALIZATION
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5

	TWO-BAND ELECTRON-PHONON INTERACTION IN FULLERENE IN THE BOND-CHARGE MODEL
	Untitled
	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.

	COHERENCE EFFECTS IN REDOX CHEMICAL REACTIONS
	EESTI FÜÜSIKA SELTSI AASTAPREEMIA



	Illustrations
	Untitled
	Untitled
	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
	Untitled
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
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