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Abstract. Jahn-Teller (JT) effects involving an orbital triplet (T) or doublet (E) state coupled to

single e and/or t, modes of vibration have been studied extensively in strong coupling. The

approach adopted here is based on a tetrahedral cluster model and it utilizes a transformation

method and an energy minimization procedure. The vibronic states which describe the system
exactly in the infinitecoupling limit are written down in terms of the states localized in wells in the

potential energy surface. In finite couplings, linear combinations of the strong-coupling states are

taken by using projection operator techniques to construct states which have correct symmetries.
This method has recently been extended to include the effects of an additional t, mode. In this

paper, these results will be used to indicate the effect of including all additional modes from the

remainder of the crystal, and hence show how a full multimode model can be formulated. Specific
results will be given for the multimode T & t, JT problem.

Key words: theory, multimode, orbital triplet JT systems.

1. INTRODUCTION

In the last few years, several papers have been published which derive

the vibronic ground and excited states forcertain Jahn—Teller (JT) systems
in tetrahedral symmetry. In particular, T®e [l], T®t [2],
T® (e+ t2) [3], and EQe [4] JT systems have been investigate%l by
using a transformation technique [?]. These calculations have been

undertaken in order to obtain accurate basis states which can subsequently
be used to determine values for the Hamreduction factors which appear in

effective Hamiltonians for real systems. This helps with, for example, the

modelling of magnetic impurity ions in semiconductor materials.

The active modes of a tetrahedral cluster are an e mode and two t;
modes. The electrons of the impurity can therefore couple to vibrational

modes of these symmetries. However, only one of the t; modes has been

considered in most previous publications, as the inclusion of both modes is
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necessarily more complicated. A much more general problem in JT theory
is to consider the coupling of an ion to the whole spectrum of phonon
frequencies present in a real crystal. This is frequently referred to as the

multimode problem and has been the subject of much theoretical work

during the last 25 years or so. Much of this work has concentrated on the

E ® e multimode problem [°]. The general problem of an electronic triplet
interacting with many e and t, modes simultaneously, provided there was

an accidental degeneracy between the e and t, modes, has also been

investigated [7]. A method for studyin§ the multimode problem for the

Т ® e JT system has been introduced [°], as summarized in [9]‚ but there

appears tobe virtually no work explicitly involving the TÖt,

rrllg]ltimode problem. An overview of all multimode models is given in

F
In this paper, we make an improvement to simple cluster models by

including coupling to the e mode and both t, modes. Specific results for

the T, ® 2t, JT problem will be given. The analysis gives the positions
of potentiaf energy minima in the eight-dimensional Q space and

expressions for the vibronic states localized in them. Whereas the

positions of the minima for these systems could have been predicted from

other multimode theories [7], explicit forms of the excited vibronic states

could not be predicted from this source. Overlap and matrix elements

between these states will be evaluated, and the results extended to the full

multimode problem.

2. THE UNITARY TRANSFORMATION METHOD FOR ONE e

AND TWO t, MODES

In the cluster model of the JT effect for a T (¢ = 1) ion coupled linearly
toane (ge, Q._) and two t 7 (Q4,Qs,Q6; Q7,Qg,Qg9) modes of the cluster,
the interaction Hamiltonian has the form:

л, = VE(QoPot+ Qefe) +V (@)1, + 05T, +OfT,)) +

+ V, (Q7Tyz + QBsz + Q9Txy) ,
(2.1)

where Vg is the e-type coupling constant and V| and V, are the t,-type
coupling constants (noting that V; was called Vr inJ“]). The definitions

of the orbital operators E;, T„’ ©К. аге given in [”]. The Hamiltonian

describing the kinetic and elastit energies of the harmonic lattice is

2

1 P, 2 2

K.y = —2-2[E +p,o 0, ] (2.2)

t

where ¢ is summed over all eight vibrational modes and where P, is the

momentum conjugate to O, This gives a total Hamiltonian

I= Iy + IC,p- A unitary transformation



352

U = exp[iZatPt] (2.3)

t

is then applied to the Hamiltonian and gives the transformed Hamiltonian

= U 3 = %, +5,. (2.4)

fZC‚Z contains terms representing coupling to excited phonon states while

JC; contains only electronic orbital operators (and the zero-point energy).
In strong coupling, it is only necessary to consider 3(; when calculating
the ground states of the system.

The Hamiltonian 3C; can be defined with respect to the vibronic basis

set lx;O), |y;0),and lz;O), where x, y, and z are electronic basis states and

O represents the phonon vacuum state. Its eigenvalues E can be found by
solving a cubic equation [s]. The values of the 0,-s which minimize the

energy may be obtained by differentiating E with respect to the 0,. This

gives eight simultaneous equations which can be solved exactly in terms

of the effective coupling constants:

if »
”

1Г 3%
7”

Кв= -=s| 5— | Ур К;=5
A V. (j=lor2). (2.5)

2| 240 x J 2 Zumj J

The lowest energy (i.e. possible solutions which are minima) fall into three

categories, corresponding to the T®e, T®t,, and T® (e+t,) JT

problems. The type of the JT effect which will operate in a given situation
is determined by which wells are the lowest in energy. In the rest of this

paper, we will concentrate on the case when the trigonal wells are the

lowest, i.e. the T ® 2t, JT effect.

3. THE SYMMETRY-ADAPTED EXCITED STATES FOR

COUPLING TO t, MODES

In the transformation method, Q,, P, and U are written in second

quantized form containing phonon creation and annihilation operators.

Th?k)ground states localized in trigonal wells will be labelled

IXO ; 0)= la; 0), ; 0), le; 0), and ld; 0), where a, b, ¢, and d are

linear combinations of x, y, and z, as defined in [?]. These states can then

be transformed back to the original space by operating on them with the

unitary transformation operator U = U, appropriate to the well k. The

untransformed states are thuswritten in the form

k)", ay —

(k).Ко ;o)=u,lx,’;o). (3.1)

Although the ground states localized in the wells do not contain phonon
excitations, the untransformed states |X(()k) ; 0) do due to the presence of

phonon operators in the unitary transformation. Therefore the
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untransformed states are automatically vibronic in nature. In a similar way,
a set of untransformed excited vibronic states |X(()k) ; M, 12m2n2) can

be defined where [, m, and n; refer to the number of Q4, Os, and Qg
phonon excitations, respectively, and [, m,, and n, refer to 07, Qg, and

Qo. In the finite coupling regime, these states are not good eigenstates of

the system as a whole, as they are neither orthogonal to each other nor do

they have cubic symmetry. It is therefore necessary to construct linear

combinations of the states which have cubic symmetry and are

orthonormal. Cubic combinations have been obtained by using the

projection operator techniques, similar to those used for the Е®е 1,
T®t, [}, and T® (e+l,) [*] JT systems.

To calculate the effect of one of the elements of a particular projection
operator, the transformation properties of both the electronic and phonon
parts of the states are required. We will give results for a T ion, in which

the electronic states x, y, and z transform under the symmetry operations of

the T 4 group in the same way as the angular momentum operators
(0, 0,0;) and not as the cartesian operators (x,y,z). Using these

transformation properties, we obtain results such as

3
, Zj (lj.+nj) ,JCS| a’; I,m\nI,m„n,) = - (-1) la’; nym 1n,m,1)(3.2)

(G=l,2), where JCš is a symmetry operation of the Ty group. Similar

results can be generated for each of the other elements of the group.
If a state of arbitrary symmetry is acted upon by a set of projection

operators for a specific irreducible representation, then the resulting states

are either zero, meaning that there is no state of this particular symmetry,
or a basis state for the irreducible representation is generated P]. А

complete set of symmetry-adapted excited states can be obtained by using
all the projection operators for that irreducible representation of the Ty

group. The resulting vibronic states, in an unnormalized form, are labelled

|¢{), where T is the symmetry of the state and the index i distinguishes
different algebraic forms of states. The complete set of states is given in

', together with restrictions on particular phonon occupation numbers

necessary to both produce states of the desired symmetry and generate
each state once only (as verified by using group theory ['2]). The vibronic

states are all linear combinations of the functional states:

х (L, M п› !» Т п2)) =

Х. (т,+лп.) Х. (л,+!.)
=lс’+ (=1)

/ / 7а- (-1) 7 7 7а’-

У. (I.+ т.)
- (-1)

/ ’ / Ь’;!|т]п'!2т2п2>‚
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ITy' (1 Mı Aı IM n,)) =

Z.(l.+n) Х. (т,+l.)
= 16°+ (-=1) / / /а- (-1) 7 ! c-

Z.(n.+m)
,-(-1) ° 7 ‘а ;Im44bm,n,,

ITZ' (11, ml’ nl’ 129 m 29 п2)> =

. (l.+m) . (n.+l)
=lа’+ (-1) / / Td-(-1)7 ! c-

E prn2-(-1) b ,11т1п112т2п2),

and

,
Ž.(m.+n)

,E'(ly»mpnpl»m»n))=la'+(-1) ° ! *b4+

Zj (nj-l-lj) , Zj (lj+mj) ,
+ (-1) c’- (-1) d;lmnlmn,). (3.3)

Normalized symmetry-adapted e c%ged states can be obtained by
evaluating the overlap factors (q‚fr(pj ). It is necessary therefore to

evaluate the expressions

(k)" (k) (k) (k)
(Хо ;Хр IX, sXp ) =

(k) (k) (k) 4 (k,)
= (Хо IX, Xp IUkIUkZIXP ), (3.4)

where k; and k; label stzžtfs) from different potential energy minima (I.е.

‘@’,'b’, ‘¢’ or ‘d’) and X,
'

refers to the phonon state in the well ky, etc.

The orbital overlaps are straightforward to calculate and are given by the

expression

1 if k. =k
(k) (ky) 1~ ™2

Х, 1х =
.

3.5
or on [—l/3 if kı#k,

G

On substitution of the U-s, expansion of the exponentials in terms of

power series and, after much algebra, the vibrational overlaps may also be

evaluated [“]. This gives the overlaps between the functional states (3.3).
In particular,
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<Tx' (11, ml’ n|9 12’ т2› п2) ITX' (РР qu ’l‚l’z‚ qz: Г2)› =

=4[s ,6 5 =5 x- П
pjlj qjm; rn

-

3 2!

j

Х.( т;+п.) Х. (р,+п)
_JJ),

e

J J 7
,-1 HSj (gr mAn öp‚-‘,- -1 nSj DArn öq‚-'n,-

j j

Ž. (p;+m)
_J4 J n

(-1) I.lsf P,g m ör,-n,-
j

(3.6)
and

(E’ (1 т п) 1, т п)1Е (Pl2 Gy, IsPy G 1))=

=a]]s, 5, 8 -=B, x- П pjlj am; r 3 2t

j

У (т.+г.) ХТ (1 +г

И7 ,
а

ИЙ ’
-1 nSj G,r mAn öp‚-‘,— (-1) ПЗ] Prn öa‚-m,-

j j

Zj( lj+mj)
,

J

3.7
with

>

S,, =ех --1-92 —Ki
(3.8)2t Pl ™ W, |

| -

j j

Using these expressions, it is then a relatively straightforward procedure to

evaluate the reguired normalization factors by using the expressions for

the symmetry-adapted states.

The S, are the algebraic functions which appear in the calculations for

the ovcrfaps in the single-mode JT problem, as defined in (' ® &

possible to see how the results above arise in relation to the single-mode
result by tracing the wells from which each term arises. For example, the

term in S, including &,; comes from the overlaps between the wells ’ab’,

'ba’, ’cd’, and ’dc+’. ‘f’he single-mode contribution for these wells is
— (4/3) 5, (-D"""s (g, r,m,n)8

U
This must simply be multiplied

bya second single-mode overlap fundtion with all labels permuted to the

equivalent ones for the second mode, but excluding the extra factor of
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—(4/3). This is because the one-mode function contribution includes a

factor of —(1/3) for the orbital overlaps and a factor of 4 because the term

is a sum over four different well combinations. Both considerations should

only be included once in a multimode problem. With the overlaps written

in the form given, it is obvious that the equivalent multimode result can be

obtained simply by extending the sums and products over j to include all

modes. These results are a significant achievement, as the calculation of
the overlaps (and of the matrix elements) for the single-mode case

required much algebra, and was the hardest step in evaluating the energies
of the full set of states. All that remains in the formulation of the full

multimode problem is to write down a full set of excited states for the

multimode case, which has not been done at this stage.

4. ENERGIES OF THE SYMMETRY-ADAPTED STATES FOR t,
MODES

To calculate the energies of the symmetry-adapted excited states, it is

necessary 10 evaluate the matrix elements of JC between functional states

(3.3). Using similar techniques to those used to evaluate the overlaps and

after a great deal of algebra, these matrix elements can be evaluated.

However, much of the details of the calculations follow directly those for

the single-mode T ® t, JT problem. The functional energies are, in effect,
the matrix elements for the single-mode problem with j= 1 multiplied by
the overlaps with j=2 evaluated between the appropriate wells in the

appropriate places, plus the same with 1 and 2 reversed. This greatly
simplifies the steps which need to be carried out for the T Ö 2t, problem,
and allows the answers to be written down in a relatively straightforward
manner by using the functions which appear in the T@® t, problem. It also

again indicates clearly how the equivalent matrix glemcnts for the

multimode problem can be formulated.
We can define the matrix elements of the functional states of symmetry

Г а$

’(Mnlmnl AT (1, Яр ГрР»э)) =

=

(i)
= zEr (l‚m, n‚P‚ q’ r) (4'l)

i

fori=l, 2. In particular, for I"' = Tx, .

| Eg„) (1,m,n,p,4,r) =

3Y 3.2
= ha, { 4[ (рі +4;+г,+ ž) - in]nõlkpkõmquõnkrk +

k
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zk(mk-e-nk)
(_l) (Hi(ll" qi7 ria mi’ ni) õpili+

+Ki (pl’ qi‚ ri’ ll’ mi’ п‚) ) Sj’ (qf rj, mj! n]) öl_‚p_,
DPy |

+ 5 (=1) (Н;(тррр гр оп) баіт‚._
‚

(4.2)

_Ki (qi, pi’ ri’ mi’ li’ ni) ) SJ' (pja rj’ lja nj) öquj
Pmp

5--р (Н;(прРр 4р '» т)) л

-К,(гоРрЯрпр 1рт) ) 5;ррар !» т) s‚]_„_

where i is one mode and j is the other. k is summed over both "r';'nodes.
Similarly ог Г = Е,

Ц
ЕБ(|, т,п,р, 4, г) =

3Y 3.2
= ho, {4 [ (рі +q,+r+ ž) — in:lnõlkpkõmquõnkrk +

k

Zk(mk+'k)
(-1) (H,(l,q9,r,msn) öp.l‚'

—К;(РрарГр !р тр п)) Sj' (ар гр т» п) б’‚-Рі
У (,+г

—

k R
-

+ Sz;
+(l) . (H, (mi’ Р‚-‚ ri’ li’ ni) g,m; ‚ (43)

_KI (ql’ Р‚‚ ri’ ml, ll’ nl) ) SJ’ (pj’ rj’ lj’ п.‚) бт;"‚
D(h+m)

+ (-1) HnP I mS, +

+K (roppapnpl,m) )S/ (ppapl,m) ö‚j„_
It is then a relatively straightforward procedure to calculate the energies of all

of the vibronic states by using the definitions of the symmetry-adapted states.

Again, the above results have been written in a form which makes it

easy to see how the correct multimode result can be obtained: namely that

J now refers to all modes except i, k refers to all modes and the terms in Sj'
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are replaced by a product of S’s over all modes j. As before, the only
obstacle remaining in the formulation of the full multimode problem is in

writing down the full set ofexcited states.

5. RESULTS FOR THE T ® 2t, JT PROBLEM

It is possible to write down much simpler expressions for the energies
of the T, vibronic ground state and its associated inversion level, as the

functions involved have relatively simple forms. After the substitution of

the normalization factors and relevant functions, the resultsare, found to

have an identicaž form to those юг Т® !, ['3] provided Ki/h@, is

replaced by Z (K. /h®.) . However, this equivalence is not true in general.
The energies 4f all {ibronic states can be plotted directly for any given

input parameters. We present here the results for some specific choices of

parameters. For simplicity, only the states with zero- and one-phonon
excitation will be considered, although the results are valid for any number
of phonon excitations. It is also useful to define a ratio of coupling
strengths

У, — К, |®,

1 1 1

The simplest choices of parameters are when the frequencies of the two

modes are equal ((sol = @, = ). Figures 1,2, and 3 show the calculated

energies, relative to the ‚i&l ground state, with the parameter m taking
values 0.1, 0.6, and 0.9, respectively.

Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key:
T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium

dash, A 9 = long dash.



359

When considering the special cases for which the frequencies of the

two modes are equal, it is useful to make an orthogonal transformation in

Q space:

Fig. 2. Energies as in Fig. 1 but with n =0.6.

Fig. 3. Energies as in Fig. 1 but with n =0.9.
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g
=

Q,+lQ,;3
g

.=

NG,-0,
(5.2)t —_Г'— , t+3

7[

»
`

I+n2 I+n2
for t = 4,5, 6 such that, when the coupling to the e modes is neglected, the

Hamiltonian becomes ['4]
2

1 p
% = v‚Jl +l7 [g FTFE [Ft + ptquf), (5.3)

ALY

where p, is the momentum conjugate to g,. This indicates that the results
obtained should be identical to those of the single-mode T ® t, problem
with an effective coupling constant

v, = vlJ(l+n2) (5.4)

and with the addition of a set of energy levels due to an uncoupled t,
mode. The levels due to the uncoupled mode should include a set of levels

at the energy ha relativeto the ground state, plus aTy (ie. A,®T,)
level which varies in energy from 2h® in weak coupling 10 Ъ@ in strong
coupling, such that it remains h® above the A, inversion level.

Figure 1 (1} = 0.1) does show both a pattern of levels for the j = 1 mode

which is very similar to that for the single-mode T ® t, problem 2, plus a

set of levels due to the uncoupled mode. However, the levels which should

be at h® show noticeable deviations from this value when the coupling to

the second mode is larger (Figs. 2,3). This can be attributed to the fact that

the states of a given symmetry are not necessarily orthogonal to each other

(although they are orthogonal to the states of other symmetries). It can be

shlgzwn [!!] that, for exgrxšlplc, if orthogonal combinations of the states

ФlO (0,0,0,0,1,0) апа ф 3 (0,1,0,0,0,0) аге taken, the expected energy-
level pattern is indeed o{)tained. These results suggest that it would have

been better to work the whole problem in terms of the transformed O

space, even for cases of unegual coupling. However, although possible,
this would greatly complicate the required calculations. Hence this has not

been attempted in this paper. As expected in Fig. 3 (n = 0.9) (where the

magnitudes of the two couplings are almost the same), the overall pattern
is very similar to that of the single-mode case. It can also be seen that in

all three figures, there are some T states which do not attain the correct

values of integral units ofh® in the limit of weak coupling to both modes.

This is again because of nonorthogonality of states of a given symmetry. It

is again possible to take orthogonal combinations of states to eliminate this

problem, but the main advantage of constructing an easy-to-use analytical
method is lost.

More general results for 1 = 0.6 are shown in Fig. 4 when the oscillator

frequencies are not equal (which is the situation which is more likely 10
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оссиг 1п геа! Т ® 2t2 JT systems). The results are similar to the case of

equal frequencies, but where the states separate into two sets which tend to

the two different values of ho; in strong coupling. (See [l '] for a similar

plot with ®, > ®,.) It must be noted that the results presented in these

figures will exhibit nonorthogonality effects in a similar way to the equal
coupling results, and again should be corrected accordingly. However,
these results are still useful in predicting the behaviour in cases of

nonequal coupling.

Calculations ["] (based on the method of ['2]) suggest that when the

frequencies of the two modes are not equal, four states should tend to the

energy h@, and four, to the energy h@,, but that the remaining 16 one-

phonon states should attain an energy which is a combination of these two

values. The reason why this is not seen here is probably because the %,
part of the transformed Hamiltonian has been neglected in the calculations.

In the single-mode problem, anisotropic effects mean that one third of the

states should have a frequency ® and the remaining two thirds a frequency
/(2/3) @. Although our basic method predicts all states to have the

frequency Ъ@, when ‘7(2 is included via perturbation theory (3], two

thirds of the modes are predicted to have an effective frequency which is a

Taylor expansion of J (1-1/3) . This suggests that the single-mode
results would be correct to infinite order in perturbation theory. The effect

of the inclusion of 'Тс2 has not been investigated for muitimode problems.

Fig. 4. Energiesasin Fig. 1 but with n =0.6, o =0and o,
= 0.8 о.
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6. SUMMARY

This paper has presented the derivation of a set of symmetry-adapted
excited states for the T ® 2t, JT system by forming linear combinations

of the infinite coupling states associated with the potential energy minima

in Q space. Analytical expressions for the normalization factors and

energies of these states have been obtained. Although the results are not

exact due to nonorthogonality of states of a given symmetry to other states

of the same symmetry, they form a useful basis for furthercalculations. In

particular, they can be used to evaluate first- and second-order reduction

factors, which are of interest in the T ® 2t, JT system. The results for the

overlaps and matrix elements involved in these calculations have been
extended to apply to the full multimode problem. The multimode problem
as a whole will be fully formulated when expressions for the symmetry-
adapted states for this problem have been obtained. —.
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PALJUMOODILISED JAHNI-TELLERI EFEKTID TUGEVA

SEOSEGA VIBROONSUSTEEMIDES

В Janette L. DUNN, Colin A. BATES

Laialdaselt on uuritud Jahni-Telleri efekte orbitaalses tripletses (T) voi

dubletses (E) seisundis, mis on tugevas seoses iiksiku e- ja/vdi t,-
vonkemoodiga. Siinkasutatav lihendus põhineb tetraeedrilisel

klastermudelil ning rakendab transformatsioonimeetodit ja energia
minimeerimise protseduuri. Vibroonseisundid, mis kirjeldavad siisteemi

tipselt 10pmata tugeva seose piirjuhul, on esitatud lokaalseisunditena

potentsiaalipinna aukudes. Lopliku seose korral on leitud tugeva seose
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seisundite lineaarkombinatsioonid, kasutades projektsioonioperaatori
tehnikat öige sümmeetriaga seisundite konstrueerimiseks. Seda meetodit

on hiljuti edasi arendatud, et arvestada lisatud t,-moodi mdju. Kiesolevas

töös on kasutatud neid tulemusi selgitamaks ülejäänud kristalli

lisamoodide arvestamise mõju, seega demonstreerimaks, kuidas

formuleerida tdielikku paljumoodilist mudelit. Erijuhuna on esitatud
tulemused paljumoodilise Jahni-Telleri probleemi T ® t, tarvis.

МНОГОМОДОВЫЕ ЭФФЕКТЫ ЯНА-ТЕЛЛЕРА В

ВИБРОННЫХ СИСТЕМАХ СИЛЬНОЙ СВЯЗИ

Жанет Л. ДАНН, Колин А. БЕЙТС

Эффекты Яна-Теллера в орбитальном триплетном (Т) или

дублетном (Е) состояниях, сильно связанных с одной е- и/или одной

{э-модами, были широко исследованы. Примененный здесь подход

базируется на тетраэдрической кластерной модели и использует
трансформационный метод и процедуру минимизации энергии.

Вибронные состояния, описывающие систему точно в пределе
бесконечно сильной связи, записаны как состояния, локализованные

в ямах потенциальной поверхности. При конечной связи находятся

линейные комбинации состояний сильной связи с использованием

техники проекционного оператора для построения состояний

правильной симметрии. Этот метод был недавно развит для учета
влияния добавочной (;-моды. В настоящей работе эти результаты
используются для выяснения влияния учета добавочных MO/

остального кристалла, дабы — продемонстрировать - возможность

сформулировать — полную — многомодовую — модель. — Приведены
результаты по многомодовой проблеме Яна-Теллера Т ® t,.
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