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Abstract. The linear H Ö h 2 Jahn-Teller effect in icosahedral symmetry is investigated. The

interaction Hamiltonian is diagonalized through a sequence of unitary transformations, where each

transformation produces a rotation in the five-dimensional coordinate space. Applying these

transformations to the entire Hamiltonian uncouples the motion on the three middle adiabatic

surfaces, leaving the highest and lowest surfaces coupled. Approximate solutions to motion on the

lowest surface are outlined and briefly discussed.
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1. INTRODUCTION

The discovery of the Cgn molecule has increased interest in Jahn—Teller

systems with icosahedral symmetry. Almost all of the electronic and

vibrational states of Cgg are highly degenerate due to the high symmetry of

the icosahedral group (I},). The Jahn—Teller interaction, because it involves

cases of electronic degeneracy, is thus a fundamental consideration in

unravelling the structural and electronic properties of this and other

icosahedral complexes. The range of Jahn-Teller interactions within the

various I}, irreducible representations adds a new and rich domain to the

older on-going areas of Jahn—Teller research.

The earliest theoretical work on icosahedral Jahn-Teller systems was

performed by Khlopin, Polinger, and Bersuker ['] who analysed the

topology of the adiabatic potential energy surfaces (APES) for the T ® h,
G® g, and H®h, systems. (T, G, and H represent an electronic triplet,
quartet, and quintet, respectively). Pooler 2] subsequently studied and

catalogued the continuous group invariances of various linear Jahn—Teller

systems with icosahedral symmetry, and Judd [3] has discussed additional
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group theoretical aspects. More recently, Ceulemans and Fowler *>]
have derived the static distortion modes of various icosahedral systems.

In the present work, we report on recent theoretical investigations into
the linear Jahn-Teller system Н ® h,: an electronic quintet coupled to

five vibrational modes which transform as a set of J=2 states. (A second
five-dimensional irreducible representation, hy, is derivable from a set of

J=4 states.) Firstly, we diagonalize the linear interaction matrix through a

series of unitary transformations to obtain the adiabatic basis states;

secondly, we discuss the ground-state solutions to the oscillator

Hamiltonian; thirdly, we briefly discuss how these combine to form a

strong-coupling wave function.

2. BASIS STATES AND THE HAMILTONIAN

The J=2 representation reduces exactly to H in the reduction of the

angular momentum states into irreducible representations of the
icosahedral group. This means that the states which transform according to

H may be written as a set of d states. The following list gives the basis
states we will use:

g 1 =22 -2 -y,

92 = Х,

q 3 =Xy, 2.1)

94 = Х2 — У2,

45 = YZ

These are even and thus can be used as bases for both the electronic and

vibrational states. We will denote the electronic and vibrational basis sets

by { i)} and {gq;}, respectively.
The interaction matrix for H® h 2 is defined in terms of the elements

У, = №<! а7>9
k

with the result

2q, q, —243 24, 4;

4, (q,+ ~/5q4) —/šqs Jšqz «/543
у = К|-24, — Bау -2q, 0 B3¢, | @2

-24,4 а, 0 -2¢, -,
45 5‹13 Jšqz —Jšqs (g, -~/§q4)
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with the electronic basis vectors ordered { |1), 2), B), 4), |s)}. The ionic

motion is represented by the kinetic energy term

h Vo2, 1 22
H =—(——)V + -то

4,
2.3

0 o m 0 g (2.3)

where2 \;2 is the cartesian Laplacian written п terms of the {g;} and

Yam®“q~ is an harmonic potential energy term, assuming linear restoring
forces on ions. In (2.3), m is the ionic mass and

2 2
¢ =4

i

and o is an effective frequency which can be interpreted in terms of the

cluster models of O'Brien [6] and Fletcher, et al. [7]. Eguations (2.2) and

(2.3) allow us to define the total Hamiltonian,

H=Hy+V. (2.4)

3. COORDINATETRANSFORMATION

The normal-mode coordinate system {q;} used in $2 is convenient for

expressing Ho, the oscillator part of H; however, it does not fully represent
the symmetry of V, the electron—phonon interaction. To better represent
this symmetry, we will apply a coordinate transformation introduced by
O'Brien [® 9]. Writing the normal-mode coordinates {q1,97,93.94,95} in

terms of the new coordinates {Q,a., Y, 0, ¢ }

3
q, = QB (3 cos2(9) —1) cos (o) +—£sin2(9) sin (0) cos (27)],

B 1
.

4, = Q 5
sin (20) cos () cos (o) —

2
sin (20) cos (¢) sin (o) cos (27) |+

+ Q[sin (0) sin () sin (o) sin (27) ],

\
O

44 = Q —žsm (0) sin (2¢) cos (@) +

+ š (I+cos? (0)) sin (26) sin (&) cos (2y) ]+
+ Q[ cos (0) cos (2¢) sin (o) sin (2y)] ,
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3

4, = Q[-Jz——sinz(e) cos (26) cos (@) +

+ š (I+cos? (8)) cos (24) sin () cos (27) ] -

— Q[sin (0) sin (2¢) sin (o) sin (2Y) ],

G 5 =

B
. L pa

=0 ?sm (20) sin (®) cos (@) —

žsm (270) sin (6) sin (@&) cos (2y) |-

| — Q[sin (0) cos (¢) sin (o) sin (27) ], (3.1)

where osQ<>,osa<n/3,osy<n,os<o6<rxr, апа 05&<1с ž"
order to cover the domain of the normal-mode coordinates, and O“= Ziqi .

These coordinates will show their utility when we need to express the

unitary transformations which reduce the interaction Hamiltonian.

However, the {Q,q., ¥, 0, ¢ } form a nonorthogonal coordinate system, and

this complicates the expression of the kinetic Hamiltonian. Even so, the

oscillator Hamiltonian takes a surprisingly simple form [> 1O]:
2

Ъ _48(48) 2. -18(. a)]Н/ =-— — —|+ sin (3a —[sin (3@)—|| +
0> zn 956 (o*s6)+ (@?sin (30)) ”o=(sin G 0 o

2 2 2

+" X A, A, 1 2 2

el ot ot|t @,
BmO |sin (x-27x/3) sin"(a+2nx/3) ”а

(3.2)
where {Äx,ky,kz} are the three components of an angular momentum

operator A within the phonon space. Explicitly,

d д д
A= i(cos (ctG — — (csc6 —)+' sin Y) —,

¢ = (cos )|(eot 0) 55— (ese 055 )+i(sin 1)35

A = —i(sin Y) ((cot 6)—B— — (csc 9)—a—)+i(cos )—д— (3.3)
y

*
N 3 V 3 ”

A =i
z a»Y

Transforming to the new coordinates separates Hg into a vibrational term

involving variables Q and o and a rotational part associated with A.. Bohr

and Mottelson [“] have dealt with a Hamiltonian identical to Hg in their

analysis of quadrupole oscillations in nuclei. Pooler [2] has shown that the

total Hamiltonian, H = Hy + V, has SO(3) symmetry — a fact we will use in

reducing H.
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The eigenvalues of the interaction Hamiltonian, V, are surprisingly easy
to express, given the complexity of the coordinates: {+2, 2 cos (& — ®/3),
—2 cos (@&), —2, 2 cos (& + x/3)}, ordered from top left in the matrix, with

each multiplied by KQ. In the adiabatic approximation, solutions to H

involve one of five potential energy surfaccsi given by the eigenvalues of

V with the addition of the restoring term m® Q2/2. The lowest of these is

1
U, = 5mmZQ2 -2KO. (3.4)

It is a function of Q only and has a minimum value at Q = Qg = 2K/(m0)2).
The lowest APES thus forms a four-dimensional hypersphere of a radius

Qo in the five-dimensional space of the vibrational coordinates

{Q,O, 7,0, ¢ }. The APES corresponding to the —2 cos (0) eigenvalue,

U, = ima?Q?-2
|

= žmco Q" -2KQcos (a), (3.5)

15 а! its minimum value for Q = Ор and o = 0. The minimum values of

Up and U; thus are both —2K*/(m®@?), and the two APES will be

degenerate over a three-dimensional subspace of the hypersphere defined

by a = 0.

4. UNITARY TRANSFORMATIONS

The interaction Hamiltonian can be exactly diagonalized as follows:

-1 -1 —1 -1
A ()B ()C (0)D (¢)[VID(9)C(0)B(V)A() = [ä] Ä

where
|

cos (@/2) 00 sin(a/2) 0

0 10 0 0

A(a) = 0 01 o O (4.2)

-sin (0/2) 00 cos (a/2) 0

0 00 0 1

100 0 0 |

0 cos (Y) 0 0 —sin(Yy)
B(Y) =|o 0 cos(2y) sin(2y) O 0 | (4.3)

0 O -sin(2y) cos (2y) 0

0 sin (y) 0 0 cos (Y)
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(3с?-1)/2 -Взс 0 /2.0

Bse (@22-1)0 -se 0

C(8) = 0 0 ¢ o s @®

35*/2 sc 0 (I+c9/20
0 0 —5 0 C

using s = sin (0) and ¢ = cos (0), апа

|lO 0 0 0

0 cos (¢) 0 0 —sin(¢)
D) =lO 0 cos(2¢) sin(2¢) O |- (4.5)

0 O© —-зю (2ф) соs (2ф) 0

0 sin () 0 0 cos(¢)| >

Note that A-1(¢)=A(-9¢), B (y)=B(-y), etc. The diagonalized
interaction matrix, [E], takes the form

1 0 о 0 0

0 сов (а -л/3) 0 O 0

[E] = 2KQ|o 0 -сов (а) 0 0 ‚ (4.6)

0 0 0 -l 0

0 0 0 0 cos(a+lm/3)

The column vectors of the [D][C][B][A] matrix give the eigenvectors of V.

In expressing them, we will use s = sin (0), ¢ = cos (0), b = cos (a/2), and

d= sin (a./2).
For the +2KQ eigenvalue,

š (3c*-1)b- šszd cos (27)

(3b+d cos (2)) sc cos ($) — sd sin (27y) sin (6)

lu )= (šszb -š (1 +c?)d cos (2y) )sin (2ф) —cd sin (27) cos (26)

(llz—šszb - š (I+c?)dcos (2y) )cos (2ф) + cd sin (27) sin (26)

(J3b +d cos (2Y)) sc sin (¢) + sd sin (27) cos ()

(4.7)

(4.4)
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Likewise, for the +2KXQ cos (@ —- x/3) eigenvalue, the eigenvector is

-——/šsc cos (Y)

(2c2 — 1) cos () cos (¢) — ¢ sin () sin (¢)

bep)=| s sin (y) cos (26) +sc cos (Y) sin (26) |- (4.8)

sc cos (Y) cos (20) —s sin (Yy) sin (2¢)

(2c* — 1) cos (y) sin ($) + c sin (Y) cos ($)

The eigenvector for the --2KO cos (0) eigenvalue is

-—zjž s*sin (2y)

sc sin (27) cos (¢) + s cos (2y) sin (¢)

bes)=| ¢ cos (27) cos (26) — -;- (I+c*)sin(2y)sin(2o) | 49

—C cos (2y) sin (2¢) — š (1+ c2) sin (2y) cos (20)

Sc sin (2Yy) sin ($) — s cos (2y) cos (6)

The lowest eigenvalue of the interaction matrix, —2KQ, has

bey) =

š (3c*-I)d+ J?šszb sin (27)

(—/šd— Ь cos (2y) ) sc cos (¢) + sb sin (27y) sin (6)

=| cb sin (27) sin (2¢) + (iz_äszd+ š (1+ cz) b cos (2y) )sin (20)

—cb sin (2y) sin (26) + (—"šszcu š (I+¢2) b cos (2y) )cos (26)

(3d —b cos (2y)) se sin (¢) — sb sin (27y) cos (6)

(4.10)
as its corresponding eigenvector, and the eigenvector corresponding to

+2KO cos (o+l/3) is
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Jšsc sin (Y)

—(2c* —1) sin (y) cos ($) — c cos (Y) sin ($)

k)=| в сов () сов (2ф) —зс 5 (Y)sin(26) |- 411

—5 cos (y) sin (2¢) — sc sin (Y) cos (2ф)

— (2c* — 1) sin (y) sin ($) +< cos (Y) cos ($)

Note that the three eigenvalues with an @-dependence have eigenvectors
without any such dependence. Similarly, the eigenvectors corresponding
to the -KQ cos (@) and -KQ eigenvalues likewise have a y-dependence
even though the APES lack any such dependence.

Within Hy only е Л, operators will be affected by the D($6)C(0)B(y)
series of transformations. These transformations represent a rotation

through the Euler angles (¢, 6, y) on a set of dstates. The effect on Hg of
a similar transformation, a rotation on a set ofp states, has been considered

by Chancey and O'Brien ['2]. The result of now forming

-1 -1 -1
B (Y)C (8)D (¢$)H,D(9)C(0)B(Y)

is the same as in the earlier case: the phonon angular momentum operator
A is replaced by A +d, whered is the orbital angular momentum operator.
One angular momentum operator J = A +d thus replaces another. In

interpreting J in the oscillator Hamiltonian, we can forget its antecedents

and need only to remember it as an angular momentum. The physical
effect of the D(¢)C(0)B(Y) transformation is to couple the rotational
motion of the ligands to the rotation of the electronic state.

The remaining transformation, A(a), affects only the c.-dependent term

in Hy. Forming A‘l(a)HoA(a) produces the following additional term in
the Hamiltonian:

00010

00000
3 3 1
-cot (30) +—|- I, 4.12ooooo[zco( ) õa] 4

(4.12)

-1 0000

00000

where I is the unit matrix.

The total transformed Hamiltonian,

-1 -1 -1 -1
A (a)B ()C (6)D (¢) HA(a)B(Y)C(8)D(9),

thus takes the following form:

_48(48) 2. -lõ(. д)]-ho —|4— |+ За —— 30) —|| +[q да qда (@ з (За) )
3

sin ( )õoc
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2 2 2

0 J} Jy Jz 1 >

ta rt tz|+ 04 +

4g Lsin (04—-27x/3) sin (24+27/3) sin a

] 0 0 0 0

0 cos (@ - 7/3) 0 0 0

+ h@kqlo 0 —cos (@) O 0 -

0 0 0 —1 0

0 0 0 0 cos(a+m/3)

00010

00000
3 d ho

— A -cot (30) +—|+—] 4.13OOOOOI:ZCO( ) äa] а
(4.13)

-10000

00000

(scaling the ene/ägy in units of hk®) with q=oQ(m® /‘Ь)“2 and

kho = K(hmw)!/2. The effect of the 0.-dependent unitary transformation

has been 10 simplify V at the expense of H: the new off-diagonal terms

couple the motions on the APES associated with the +2KQ and -2KQ
eigenvalues (the highest and lowest of the five energy sheets).

5. SOLUTIONS OF THE FIVE-DIMENSIONAL OSCILLATOR

EQUATION

Ignoring the coupling between the adiabatic sheets (i.e., dropping the

off-diagonal terms in o) reduces the transformed Hamiltonian to the one

that is diagonal in the adiabatic basis states (Eqgs. (4.7) to (4.11)). The
oscillator Hamiltonian that remains has been analysed previously by
Chancey and O'Brien [l2]:

_48(48) 2
. -18(. д)]H, = —o® —|g— |+ sin (30 —|sin(3o)—|| +

2 2 2
J J J+lf%[—2—:-—++ _T] +Za (5.1)

4g” Lsin? (o—-2x/3) sin’(a+2n/3) sin’a) 2

Solutions are classified by their angular momentum values, with the

simplest case being J = 0. For J= 0, the solutions (Y) have the form

® (0, о; 0,4,) =
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= exp[-o*/2]@*"L Y 2 QM)P (cos 30) 0,4)) —
in terms of Laguerre and Legendre polynomials. N and n are positive
integers or zero, and the energies are given by E = 2N + Зл + 5/2. There
are no lé= ] states and the next highest states in angular momentum have

J=2["].
For J = 0, the lowest energy is given by N=n =O, giving a combined

energy of

E 5 .
— = --2kg+ 1
m 2 4

for a wave function

Yıratar 5 F(Q, 0;0,A,) М)).

6. DISCUSSION

The four unitary transformations defined in Egs. (4.2) through (4.5)
have a combined effect of almost completely diagonalizing the linear

H® h 2 Hamiltonian. Only the off-diagonal terms in o remain to couple
motions on the highest and the lowest APES. Work remains to be done on

this system, and we close with observations under the following headings:

Uniqueness of the lowest eigenvector. There is an ambiguity in the

choice of eigenvectors when the roots go degenerate а! @ =O, but it is

clear that the eigenvectors are properly orthogonal and that they change
continuously through a =0 and through Yy = 0. Hence, if we continue to

ignore any breakdown of the adiabatic approximation where the surfaces

meet, the vibronic Hamiltonian can be solved separately on each surface.

The SO(S) surfaces. For the lowest (and the highest) roots the simple
substitution of @& — 2/2 in going from the g-s to the corresponding terms

in the electronic eigenvector means that there is a Berry phase change of 7t

that occurs as a point in the g space going once round a closed circuit. It is

easy to show that this will select the five-dimensional d-like representation
(1,0) of SO(5) as the ground state instead of the one-dimensional s-like

representation (0,0) which would have a smaller contribution to the energy
from the angular momentum.
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(H®h,) -TUUPI JAHNI-TELLERI EFEKT
IKÖSAEEDRILISES SUMMEETRIAS

C. Clifton CHANCEY, Mary C. M. O'BRIEN

On uuritud lineaarset (H ® hz)-tüüpi Jahni-Telleri efekti ikosaeedri-

lises sümmeetrias. Interaktsiooni hamiltoniaan on diagonaliseeritud mit-

mete unitaarteisenduste abil, kus iga teisendus teostab pöörde
viiemõõtmelises koordinaatruumis. Nende teisenduste rakendamine kogu-
hamiltoniaanile eraldab liikumised kolmel keskmisel adiabaatilisel pinnal,
aga jätab kõrgeima ja madalaima pinna seotuks. On välja eraldatud

lähendlahend liikumise tarvis madalaimal pinnal ja lühidalt selle üle dis-

kuteeritud.

ЭФФЕКТ ЯНА-ТЕЛЛЕРА ТИПА Н 9Ь

ИКОСАЭДРИЧЕСКОЙ СИММЕТРИИ2

С. Клифтон ЧАНСИ, Мэри С. М. О’БРАЙАН

Исследован линейный эффект Яна-Теллера типа Н®Ь, в

икосаэдрической — симметрии. — Гамильтониан — взаимодействия

диагонализован рядом унитарных преобразований, где каждое

преобразование осуществляет вращение в пятимерном координатном

пространстве. Применение 3THX преобразований K — полному

гамильтониану разделяет движение на TpeX промежуточных
адиабатических поверхностях, оставив связанными наивысшую и

наинизшую — поверхности. —Выделено M — продискутировано
приближенное решение для движения на наинизшей поверхности.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
	Untitled
	Untitled
	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Characterization of the samples under investigation

	PHOTOINDUCED INSTABILITY OF MnO4 MOLECULARDEFECTS IN POTASSIUM IODIDE
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.

	INVESTIGATION OF VIBRONIC INTERACTION OF Cu(II) lONS IN CsMgCl3 SINGLE CRYSTAL
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce

	DYNAMICS OF JAHN-TELLER IONS IN LAYERED OXIDES
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.

	ORIGIN OF GAP ANISOTROPY AND PHONON RENORMALIZATION
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5

	TWO-BAND ELECTRON-PHONON INTERACTION IN FULLERENE IN THE BOND-CHARGE MODEL
	Untitled
	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.

	COHERENCE EFFECTS IN REDOX CHEMICAL REACTIONS
	EESTI FÜÜSIKA SELTSI AASTAPREEMIA



	Illustrations
	Untitled
	Untitled
	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
	Untitled
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
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