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Abstract. The influence of vibronic coupling on the properties of donor impurities in

semiconducting systems is discussed. The effects are seen in infrared photoconductivity and

Fourier transform spectroscopy experiments. This is particularly the case for 'the resonant polaron
effect’ when the electronic transition energy matches the longitudinal-optical phonon energy. The

spectra analysed here involve transitions to metastable states in the presence of high magnetic fields

(~14T). A new variational-type approach for the calculation of the energies of analytical
expressions for the wave functions of the metastable states has been developed, so that the effects of

polaron interactions on the transition energies can be calculated. Experimental and theoretical

transition energies are compared. The polaron effect at resonance causes a repulsion in the

transition energies of ~15 cm! in bulk GaAs. Nonresonant polaron effects are found tobe much

smaller in bulk but ~5 cm™! in multiquantum well (MQW) systems.

Key words: low-dimensional systems, resonant polaron effect, nonresonant polaron effect.

1. INTRODUCTION

For over 50 years, the coupling between electrons and the vibrations of

any surrounding lattice (often called 'vibronic coupling’) has played a

highly significant role in many areas of condensed matter physics.
However, this coupling takes many forms and its magnitude varies widely
in various situations. In 1937, Jahn and Teller ['] considered in detail the

case of a substitutional magnetic impurity ion (such as a transition metal

ion) in a dielectric or a semiconducting host. In such cases, the vibronic

coupling, which describes the interactions between the electrons and the

vibrations of the surroundings, is then usually written in terms of an

interaction Hamiltonian of the form ([e.g. [%3)):

Hnı 5 Hyr = Vg (EqQq + EcQ¢) + Vp(T,0+T,05 +T,,O¢) - (1.1)

The Qs are the (acoustic) phonon displacements, the 75 and Es are orbital

operators and the Vs are the coupling constants of E and T, symmetry.

https://doi.org/10.3176/phys.math.1995.2/3.22

https://doi.org/10.3176/phys.math.1995.2/3.22


328

Thus the vibronic coupling enters by modulating the crystal field at the ion
in question. This coupling results in the very well known Jahn-Teller (JT)
effect which manifests itself through the appearance of JT reduction

factors in effective Hamiltonians used to describe the spectroscopic
properties of such ions.

A totally different set of circumstances arises for the case of a donor

impurity in a semiconducting host. Firstly, the donor electron is only
weakly coupled to its nucleus and thus it has a very large hydrogen-like
orbit with a radius much larger (of order 10 nm) than the atomic spacing of

the host and a small effective mass (of order 0.067 m, where m, is the free

electron mass). The influence of other ions is thus very small so that

crystal field effects are minimal. This means, secondly, that the electron-

phonon interaction or vibronic coupling is of a long-range Coulomb-type
interaction and thus it involves the longitudinal-optical (LO) phonons.
This is often referred to as the 'polaron effect’, as the electron then

becomes surrounded by phonons, due to the distortion of the lattice
induced by the electric field of the electron, and a 'polaron’ is formed. The

interaction can be written down by using the Frohlich Hamiltonian C:
, . b

х = Х, = 2,(V,a €97 +Vale™") (1.2)

q

for an electron at r land a phonon of momentum g where V,, is the coupling
constant and a,, a, are phonon annihilation and creation operators. One

еНес! оЁ Ср 15 10 introduce anisotropy in the effective mass of the electron

which in turn affects its magnetic properties [°]. This effect is much more

pronounced in quasi-two-dimensional systems such as in a multiquantum
well (MQW) as generated by MBE-grown semiconductor layers. This has

been highlighted in two very recent papers [° 7] ав №е polaron effect

influences strongly the optical and transport properties of such materials.

2. BACKGROUND

In the last decade, many studies of donor impurities in the presence of

high magnetic fields have been undertaken. Experiments are generally
carried out by using far-infrared techniques incorporating either

photoconductivity or Fourier transform spectroscopic measurements.

Originally, the simple donor D° was studied in bulk materials such as

GaAs but recently there has been much interest in donors in quantum well

and superlattice systems. Most of the many publications on this subject
concentrate on hydrogen-like transitions such as Isg to 2p,. However, the

spectrum usually contains many additional sharp lines at higher energies.
It was recognized some time ago (e.g. [B'"]) that much of the observed

fine structure in both bulk and MQW systems, particularly at the higher
energies, arises from transitions to the so-called 'metastable' states. This is

the name given to those states which are bound in high magnetic fields but

which become unbound as the field is reduced to zero [“]. To understand
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these states we note that, in a strong field and with no impurity, these

eigenstates are Landau states. For an impurity in zero field, the eigenstates
are hydrogen-like. For an impurity in a large field, we have a mixed

system and thus the metastable states are defined tobe those eigenstates
which are not present in zero field.

In giving a detailed description of such shallow donor spectra, with the

emphasis on the transitions to the metastable states, it is clear that the

electron-phonon interaction is important. In particular, a much larger
effect is found when the LO phonon energy exactly matches a transition

energy and the so-called resonant polaron effect arises. Its study gives
valuable information on the metastable state wave functions. In particular,
previous experiments on a high-purity n-GaAs sample using a far-infrared

laser [“] were extended ['2] up to the energies of 330 cm”' and with fields

up to 14 T. This energy is above the LO phonon energy of 296ст! 50 фаг

the resonant electron-phonon interaction of some of the metastable states

could be studied. The other most recent work which is closest to this [‘3]
considers transitions to hydrogen-like 2p states only.

A new approach to the problem of calculating expressions for those
metastable states which are needed to estimate the strength of resonant

polaron interactions was given very recently ['2]. The method involved a

simple variational procedure and it gave simple analytical expressions for

those metastable states involved in the most prominent transitions in the

spectrum. It is this method that is used here.

Our discussion here on the effects of vibronic coupling in donor

impurities is divided into three parts. The first two parts give an account of

the polaron effect in bulk GaAs involving metastable states, firstly, away
from the resonance position and, secondly, in the resonance region where
the coupling is the strongest. The third part gives new results for the

polaron effect in low-dimensional systems but in the nonresonant regime
only.

3. THE POLARON EFFECT IN BULK GaAs

For the reasons stated above, we concentrate on those infrared

transitions to the metastable states. However, it is useful to have a

convenient notation to describe all states of the donor impurity. Thus we

refer to both the hydrogenic and metastable states, using the high-field
notation (N, m, v), where N is the principal Landau quantum number, m is

the usual magnetic quantum number and v is the number of nodes of the
wave function in the z direction [!']. Equivalences between the high-field
and hydrogenic notations are well known. Thus the ground Is-like state is

written as (0, 0,0), 2p, as (1, 1,0) and 2p_ as (0, -1, 0), for example. In

most experiments, the Faraday configuration (E L B) is used, so that,

according to the electric dipole selection rules, transitions from the ground
state 10 the states (N, xl,v) for v even dominate the spectrum. The

strongest transitions observed are expected tobe to states with v = 0.



330

3.1. Experimentaldata

The experimental results ['2] with which we compare our calculations,
were obtained from MBE-grown samples consisting of epitaxial layers of

n-GaAs on a semi-insulating substrate, intentionally doped with Si

(Ny=3sx 10" cm™ апа N,=lx 10'* cm™3). Previous magneto-optical
experiments on this system had been carried out using a conventional

optically-pumped FIR laser for laser energies up to 264 cm”! and a 6 T

superconducting magnet [!!]. These experiments were subsequently
extended by FIR laser spectroscopy with fields up to 14 T. For the energies
below that of the transverse-optical (TO) phonon at 270 cm”!, where the

polaron interaction is small, a nearly linear field-energy relation for the

transitions was observed. In that energy region, therefore, the experiments
using a relatively small number of different laser wavelengths were found

tobe sufficient to determine accurately the field-dependent transition

energies. For the energies near that of the LO phonon energy, however,
this relation becomes very nonlinear due to resonant polaron interaction.

As the limited number of available FIR laser lines in that energy region
(2295 ст") could not give the information necessary for the detailed

observation of the resonant polaron effect, further FIRPC experiments
were performed & by using a Fourier transform spectrometer. Because

of the Reststrahlen reflection band of GaAs, no spectra were observed

between 270 and 296 cm™!. Also, no signals were seen above 330 cm™!
probably due 'ю system limitations. The experimental results for

transitions to the (3, 1,0) and (4, 1,0) metastable states are shown in

Fig. 1. A clear resonant behaviour can be observed in the 296 cm™! to

330 cm™! region resulting from the interaction with the nearby Isy state

with one LO phonon excitation and the 2p_ state with one LO phonon
excitation.

3.2. A summary of the theory for metastable states

In order to undertake the necessary calculations, explicit expressions
for metastable states are required. Neglecting spin, the nonrelativistic

Hamiltonian for the electron associated with the donor impurity atom

placed at the origin may be written in the form M
2

% = ——+ V(r) (3.1)—

2my
, '

where T =p + eA is the momentum operator, A is the vector potential of

the uniform magnetic field B, V(r) is the Coulomb potential, and my is the

effective mass of the electron. The z-axis is chosen to be along the

direction of B. In the absence of the Coulomb term, the eigenstates of (3.1)
are the well-known Landau functions Фп (Р, ф) which, in cylindrical
coordinates, have the form
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1, 1
1 ime 726 5/

Ф(рф) =

T e C P 0., (32
2^

where N and m arezthe L%ndau and the magnetic quantum number,

respectively, {(=p /(2\X)) is a dimensionless variable ап

A(= J(n/eB)) is the magnetic length. The polynomials Py, are closely
related to the associated Laguerre polynomials. It is useful to introduce the

operators |

3 (T
x

+ iny)
п, = ъ л (3.3)

which act as raising and lowering operators on N and m such that

Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the

(3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band

nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen

to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) ,

and |‘l‘2p ,q) .
The experimental points are shown by A. The calculated transition energies

excluding the polaron effect are also shown (by dashed curves).
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It+<l>Nm(p,¢) = NN+ IФі\/+lт+l(р’ф)’ (3.4)
*Фн(р, ф) = NDy 11009 -

When the Coulomb term is included, these definitions can still be used

such that, when the problem is formulated in a dimensionless form, the

Schrödinger equation becomes

1\ & 2[4ß(n+n_ +ž) —

‘;2
— ;:I ‘l"va (r) = Eva‘Pva (r)

,
(3.5)

where YW
Nmy (r) is the total wave function and £

Nmy
is the energy. In

(3.5), the 2 unit >of length is е effective Bohr radius,

a, (= 4211:831 / (тое )) ‚
and the unit of energy is the effective Rydberg,

R(=e / (81tea0)) ‚ В(= (erß) / (4mOR)) is a dimensionless measure

of the magnetic field. In the adiabatic limit of very strong magnetic fields,

when the cylindrically-symmetric magnetic field dominates, the wave

function W(r) can, to a good approximation, be written in the separated
form:

Y= Ф
N

Nmv () =

D (Pf (2), (3.6)

where f„l::, (z) is a function of z oš,lly. The method which we adopted [!2]
to obtal;\r} values for E,= and f__ (z) used simple variational methods.

Thus f_, (z) was treated asa trial function of the form

2

N ~bym?
f(2 =ze "

(3.7)

for the two cases where v =0 and 1 and where by, is the variational

parameter. For these particular cases, v gives the parity of the wave

function in the z direction. The energy of the metastable state and its

associated wave function are then found by minimizing the energy
expression

[Bb -Zbymt”
v V Nm N 2v Nm

Eymv > 28(2N+1) +3'b, - (4by) __n__J'ler z € dz

0

(3.8)
with respect to the parameter by;,,. The resultant normalized wave function

is given by
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where IZ(')'l Y
is the integral

т

SA L-Zb yy -Ig(’)n\’: sze Ndz= —, 5 (3.10)
(45у) Nm

3.3. The calculation of transition energies

In order to calculate the transition energies corresponding to the FIR

spectrum, the energies of both the ground and relevant excited states are

required. However, as the electron is most tightly bound to the nucleus

when it is in its two lowest energy states, Isy and 2p_, the above method of

calculation is not sufficiently accurate. Therefore, the method ofDunn and

Pearl [!°] was used for these states in which the hydrogenic wave

functions are written in the form

2 2
; -(B.+õ)p —-O.Z

m ım i

Y,= Zcipl em ta (3.11)

i

Here c; are wave function coefficients, €; and B; are the numbers chosen

from the Gaussian expansion of the Slater-like function of the hydrogenic
wave function and ö = 0.2ß (to allow for the constriction of the wave

function in the p direction with the increased magnetic field).
The transition energies from the Isy ground state to various excited

metastable states have been calculated. However, to compare these

calculations with the experimental data it is necessary to take into account

two corrections. The first is nonparabolicity of the conduction band. To do

this we use the standard Kane model [!°] for the corrected energy E and

write:

0
E

E = Eo[l -s'‚—s—), (3.12)
5

where E Õ is the energy calculated for a parabolic conduction band, E, is

the GaAs band гар (= 1520 meV). The parameter 8 is taken tobe 0.73

['7]. The second correction, which follows, is due to the polaron effect

which is the main subject of this paper.
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4. THE POLARON EFFECT

Consider an unperturbed state |¥ , 0) of the energy E, where ¥
2

is the
electronic wave function and 'o' indfcates that all LO phonons are in their

ground state. The correction AE, to the energy of this state from the

polaron effect is given in the second-order perturbation theory by ['B)
2

AB S SX
KPа0)

ал
8

, th+’ho)Lo-Eg—AEg’
"

where YY , is another electronic wave function with the energy E, and g denotes

that there is a single excitation of a LO phonon of the wave vector g with the

energy Y>o
g

= r 0 = 26 cm”!. 3 is the Frohlich polaron
Hamiltonian given in (1.2). V, and V

g
Aconstants fora given g such that

4na[ % [ *Фо\?
Vo' = T s(=) (42)

Lo @

We concentrate here on the ['¥s,, 0), [¥;0 0) metastable states and in

particular on the region where they have energies very close to those of the

bST 9) and |Y,p° g) hydrogen-like states. The polaron interaction

between these states is calculated by using the form of wave function

(3.6) and (3.7) obtained from the variational procedure for the metastable

states described above and the hydrogenic form (3.11) from [ls] for

hydrogen-like states. Thus we have, for example,

2

E[F 5 I 3 0 =

q

ga
* 3 2 oo 10

та 2 2 В i °)
=

4
К (h@_9) nl_'flozzj—-—_z—z х

z 0 j i J(o,+by) (aj+bNm)DiDj
j

Is,» 310 Is,, 310 MQZ q

“Э

2.50 o T 4 p (P )]X_[qu‚— (9,)F; (9,)e [l—d> ZJÄ dq, ,

0

where

154, 310 2[a R B (4,
So, p p __EЕ. (4.)=——s| —-24 + 96 +—[ -8)+1 (4.4)

i p 96D? D? D, 4D, D,
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and for other states it is similar. In the above, we have used the notation

D, = Bi+o.7ß‚A = 1/ (o;+by,) + 1/(aj+bNm) andß = /D; +

+l/D;. q
p

is the p component of the Lq—š())honon wave 3 l\(l)ector and the

function ®(x) is the probability integral. c; ,etc.and IZO ,
etc. are the

constants associated with ‘Plso, etc. and ‘РЗЮ‚ etc. wave functions,

respectively. For simplicity, the summation over the states ¥, has been

limited to the nearest states.

As can be seen from above, one advantage of using a simple expression
for metastable wave functions is that the calculation of the polaron
correction is straightforward. Also, the numerators in the polaron
correction terms reduce to a one-dimensional integral which can be solved

readily by numerical methods. The transition energies incorporating
corrections due to the band nonparabolicity described above and the

polaron interaction for the metastable states I‘l’3l0 0), [F 410° 0) and for

the hydrogenic states |V, q) and I‘Pzp_ ‚9) for all ranges of magnetic
fields, including that when resonance occurs, have been obtained. The

results obtained are shown in Fig. 1 for GaAs, for which ay = 100.06 A,
R=46.llcm™ and В =0.076 В (for B ш Tesla), together with

experimental data ['2]. Also shown in the figure are transition energies
without the polaron correction.

It is clearly seen from Fig. 1 that the polaron correction to the transition

energies in the nonresonant regions is very small. This correction can be

incorporated into the theory by simply introducing a factor (1 + @/б)
implicitly in the value taken for the effective mass of the electron with
o =0.068. In the resonant region, the polaron correction causes a

repulsion between the relevant excited states and thus in the transition

energies of 10-15 cm”!. Overall, the calculated transition energies
corrected by the polaron effect are in very good agreement with the

corresponding experimental data when the polaron effect is included in

both the resonant and the nonresonant regions.

5. THE NONRESONANT POLARON EFFECT IN MQW SYSTEMS

The same second-order perturbation theory has also been used to

calculate the shift in the energy arising from the polaron effect of the low-

lying hydrogen-like states of the donor impurity in a GaAs/GaAlAs MQW

system as a function of the applied magnetic field in the nonresonant

regions. In principle, the calculations are straightforward on using (4.1) for

the polaron correction for the states given by either (3.7) or (3.11).
However, the problem now contains a large number of definite integrals
related to the z direction, which need tobe calculated by computer. Again,
to contain the calculations within manageable proportions, only one

phonon excitation is included. The shifts in the energy for the low-Iying
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Is, 2p,, and 2p_ states have been obtained for a MQW system in which the

well width (= 150cm’l) is equal to the barrier width. The results obtained

so far both without and with the polaron corrections are shown in Fig. 2.

At 2T, the polaron correction decreases the energy of the 2p, and 2p_
states by ~5 cm™! and the 1s ground state by ~10 cm”'. Thus the transition

energies change ~5 cm™!. These calculations are in very close agreement
with t%lgose undertaken independently by others using variational methods

(e.g. [!8)).

6. DISCUSSION AND CONCLUSIONS

The effect of vibronic coupling on the properties of various types of

donor impurities is currently receiving much attention and some of the

very recent work is cited above. Other work includes the consideration of

separate contributions from the surface and bulk phonons, the influence on

the coupling of an electric field and the effects in quantum wires and

quantum dots.

The calculations reported here are different from those of other

investigators in that we consider metastable states for the bulk case. In

general, we have found that, by modelling the excited metastable states

with a very simple variational wave function, remarkably close agreement
is obtained with the experimental data. In fact, a comparison between

Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of

the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and

barriers have a width of 150 A.
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theory and experiment on an enlarged scale of Fig. 1 clearly shows that the

two agree normally to within 1% and that the maximum difference is

always within 2%. To our knowledge, this is the first time that such a good
quantitative agreement has been obtained between experiment and theory
for the transitions involving the metastable states.

We have concentrated here on resonant effects in bulk GaAs. We find
that the polaron effect is considerably enhanced when the electronic
transition energies correspond to the LO phonon energy, in agreement with

experiment. However, the effects of confinement have been supposed to

enhance the strength of the electron-LO phonon interaction [l3] due to the

curtailment of the extent of the wave function. Indeed, we have found a

very much larger shift in the transition energies with nonresonant polarons
in MQW systems compared to the bulk GaAs; this emphasizes the point
made by others [6’ 7] that confinement effects enhance the polaron effect.

We emphasize that our calculations are basic and that there is no input
from the experimental data into the analysis. The next stage is to extend
our current calculations on resonant polaron effects involving the excited

metastable states to MQW systems.
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VIBROONSEOSE EFEKTID MADALADIMENSIOONILISTES
SUSTEEMIDES

Colin A. BATES, Janette L. DUNN, Patrick W. BARMBY

On kisitletud vibroonseose moju doonorlisandite omadustele pooljuht-
siisteemides. Efekte on vaadeldud infrapunases fotojuhtivuses ja Fourier’

spektroskoopia eksperimentides. Siia kuulub resonantne polaronefekt, kui

elektronsiirde energia vastab longitudinaalse optilise foononi energiale.
Analiiiisitud spektrid on seotud siiretega metastabiilsetesse seisunditesse

tugevas magnetviljas (~14 T). On arendatud uus variatsiooni tiiiipi ldhend

metastabiilsete seisundite analiiiitiliste lainefunktsioonide energiate
arvutamiseks. Sellega voib leida polaroninteraktsiooni moju siirdeener-

giatele. On vorreldud eksperimentaalseid )а teoreetilisi siirdeenergiaid.
Polaronefekt poOhjustab resonantsi korral siirdeenergiate tdukumise
~lscm™! GaAs sisemuses. Mitteresonantne polaronefekt on sisemuses

palju viiksem, kuid kvantauksiisteemides on see ~5 cm™".

ЭФФЕКТЫ ВИБРОННОЙ СВЯЗИ В СИСТЕМАХ НИЗКОЙ
РАЗМЕРНОСТИ

Колин А. БЕЙТС, Жанет Л. ДАНН, Патрик В. БАРМБИ

Обсуждено влияние вибронной связи на свойства Ддонорных
примесей в полупроводниковых системах. Эффекты наблюдены в

инфракрасной фотопроводимости и в экспериментах спектроскопии
Фурье. Сюда относится резонансный поляронный эффект, имеющий
место в случае, если энергия электронного перехода соответствует

энергии продольного оптического фонона. Рассмотренные спектры
связаны с переходами в метастабильные состояния в сильных

магнитных полях (-14 Т). Развит новый подход вариационного типа

для вычисления энергий аналитических BOJIHOBBIX — функций
метастабильных состояний. Также можно вычислить влияние

поляронного взаимодействия на энергии перехода. Сравниваются
экспериментальные и теоретические энергии перехода. Резонансный

поляронный эффект приводит к отталкиванию энергий перехода
на 15 см`! в объемном GaAs. Нерезонансный поляронный эффект
намного меньше в объеме, но равен -5 см”! в системах квантовых

IM.
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