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Abstract. We investigate the large U limit of the one-and thethree-band Hubbard model. It is found

that the dynamics of a hole concerning the stabilization of spin fluctuations differsessentially in the

two models. We therefore propose an alternative approachofmapping the three-band model onto an

effective one-band Hamiltonian which describes the motion ofan additional oxygenhole, in contrast

to the usual mapping where the hopping of the Cu-Osinglet is reduced to the motion ofthe Cu hole

alone.
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INTRODUCTION

A common feature of high-T, perovskite compounds such as La»CuO4
and YBa,Cu3og is that they are highly correlated AF-ordered insulators

in an undoped case. Upon doping the systems by either chemical or

photoexcitational methods the additional holes strongly couple to their

magnetic surrounding, leading to a metal-insulator transition at relatively
small concentrations. This fact and the simultaneous persistence of two-

dimensional spin ordering up to high charge carrier concentrations has

been explained earlier by one of the authors ['] within the model of

microscopic percolative phase separation. This model is based on the

idea that the doping of CuO, planes with holes leads to the creation of

small spin-polarized clusters (magnetic polarons, ferrons). These clusters

have but low mobility, whereas the holes inside the clusters can move

freely. As a result, on increasing the hole concentration and due to the

diffusion of clusters, the latter start overlapping and a (fractal) metallic-

like percolation network is built up. This leads to the destruction of the

AF order and to the appearance of metallic-like conductivity or, below T,
to superconductivity, within the percolation network [']. This spin-cluster
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model allows also the explanation of recent experimental data on time- and

temperature-dependent phase separation in weakly doped La2zCuO44s апа

La,_,Sr,CuQ4 samples [* *°]. Also, magnetic susceptibility measurements

[?] show the existence of small spin-polarized (superparamagnetic)
particles associated with holes. Recently, the existence of spin-polarized
clusters in LazCuO44s has been demonstrated by EPR measurements [*].
In addition, the magnetic resonance signals measured inRBa,Cu;o,. (R=Y,
Gd) have been attributed to clusters with a magnetic ordering [*]. A review

about the experiments on phase separation is given in [* 7].
Concerning the calculation ofspin-cluster states, two models have been

established which are used to describe the low-energy features of CuO,
planes. The first one is the large U limit of the one-band Hubbard model

(t — J model), which in the context of cuprate superconductors has been

proposed by Anderson [®]. The existence of spin-polarized states within

the t — J model has been proved by several groups [* '°]. The second

model was simultaneously proposed by Emery [''] and it takes into account

the hybridization between the oxygen p,/, and the Cu d,._,. orbital, the

latter being additionally subjected to a strong Hubbard repulsion. Within

this model, as we will see later, the formation of magnetic polarons is

strongly favoured, compared with the { — J model. The binding energy
and the polarization of the spin clusters have been obtained by various

methods in [ '2='4]. It has been shown by Zhang and Rice ['*] that in a

certain limit of parameters an exact mapping of the three-band model onto

the t — J model is possible. However, an important point of criticism in

connection with this one-band mapping is the fact that the derivation of

the t — J model does not depend on the magnetic ordering which strongly
influences the transport properties of an oxygen hole. It has been pointed
out by Hizhnyakov et al. ['°] that in a one-band model the Kinetic energy
should be describedby a spin-conditioned hopping term instead of the usual

conditional hopping Hamiltonian like in the { — J model.

In the present article, we study the motion of a doped oxygen hole in an

AF-ordered CuO-, plane. Starting from the Emery model, we will derive

an effective Hamiltonian for the oxygen holes alone. To account for the

AF-ordered Cu-spin background we will formulate the Hamiltonian in a

similar wayas has been done by Varmaand Schmitt-Rink (VSR) [!7] for the

t — J model. The hole dynamics in our Hamiltonian will be seen to differ

essentially from that of VSR, as it contains the motion of spin clusters and

the motion of holes inside these clusters from the very beginning.

2. THREE-BAND HUBBARD MODEL

Westart from the Emery model mentioned above, writing it as follows:

H = > Hoc + Hine, (1)
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where

Ho„=z cdnfw + ©z n, +Uzпа +

+ТУ`( - п) (4орто + ^.е.), (2)

Hint=T> no (dloPme +h.c). (3)

Like in ['®], we will remove Cu states with double occupancy by the

following unitary transformation:

T
—

t
—S=

7š Nd—o (‹і…‚р,…‚ h.c.) , (4)

with € = €4 — ¢,. This leads to an effective Hamiltonian which contains

essential elements up to the fourth order:

H=Y emi, +¢> n 2 +T > (I—n4-0 (dpr„„, + h.c.) +

1 1
+K5 (s;*„sg - zn:'„N‚’‚j) +J% Y (sgs;'„ - 2п;{п;'і‚) ‚ (5)

т (nm)

sd and SP are Cu and O spin operators introduced as usual according (0

.

1
d:rnfdml =ng + ngm , dl„Tme — žnžn + ngv (6)

. 1
РмРы = Sim +lSym » PhyPmt = 5Ny + S5, (7)

1
Prlw =

ž z p;tna (8)

is a totally symmetric oxygen electron operator of a CuO, plaquette, (m’)
denotes the sum overfour oxygen sites which are nearest to the mth Cu site.

The term ~ J¥ describes a Kondo-type Cu-O spin—spin coupling; it differs

from zero if there is a hole on an oxygen site. The interaction constant is

given by
K T 2 9“ о = 8—.

П-
(9)

In the limit U — co,e — 00, where the mapping from the three-band

model to the ¢t — J one becomes exact, J¥ is equivalent to the energy gain
due to the singlet formation of an oxygen hole with a Cu hole.

The term ~ J% describes a Cu—Cu spin—spin interaction which causes

an AF order in the system. The interaction parameter reads as follows:

274 2(U —¢)J |l+ . 10( '9



311

The main interaction term in /1 (~ T') describes the spin-conditioned
hopping of the electron or hole between the nearest neighbour Cu and O

ions. As has been pointed out by Hizhnyakov et al. in ['°], this process
differs essentially from the analogous process in the /—Jmodel. In our case

the single hole motion v T' depends on spin orientation on Cu sites already
in the second order, while such dependence in the / — J model first appears
in the fourth order ['?]. In the latter model the dynamics of the system is

reduced to the Cu—Cu hole motion alone. Indeed, when one considers a

hole in a three-band model initially being located at a Cu site, there is no

restriction concerning the spin ordering for the motion to the next nearest

Cussite. A Cu hole in this sense behaves like in a one-band model, whereas

an oxygen hole does not. However, as the doped holes are mainly of an

oxygen type, it is important to account for their dynamical properties when

constructing a one-band model.

3. ONE-BAND MODEL

In this section we derive an effective one-band Hamiltonian for the

oxygen hole motion which takes into account the effect ofspin-conditioned
hopping between Cu and O sites. By using the Wannier operators

1 .

P‚;‚„=7V.Ze'RMP‚;„‚ (11)
k

] ikmQmo=j26 Qo> (12)
k

with

1 . .

Pro=zPklPoko(l + 9) + Рудо(l + e7*)], (13)

1 ; -i

Qro=OklPrko(l + е“») — Pyxo(l+e7°7)], (14)

Pa,kazz eikmPa‚ma‚ (15)

,Bkz‘/l + %(coskz + cosky) (16)

(indices a = r, y describe two oxygen states in the mth cell), Hamiltonian

(5) can be represented in the form [']

H=Y {ean?, + PPi, +2T6(I —nd_,) (d}, Ph, + hoc)} +

- 1 >

+271 » (1 - nd_,)(dt,PL, +h.c.) +JF X (s‘‚i‚s{‚’‚ — an„N‚’„) +

(nm) m

1
+J% Ä‚ (sgs;‘„ — zn;{n;‘„) ,

(17)



312

where the transfermatrix elements are defined via

T0=0.96T, (18)

Т, = 0.14 Т. (19)

The unit cell now consists of a Cu and a symmetric oxygen state |P’),
respectively. The hybridization between these states in the cell is given by
To, between the neighbouring cells, by Tj.

When we restrict ourselves to the motion of a single hole in the CuO,

plane, the second-order process of moving the oxygen hole from one cell
to the next one is given by

4T T ’ , , ,

H® =—:r 5 (н1)! V UKXIE + XIL)V2T. — (20)

(mm')oo'

Here X,, апа У,„ denote Hubbard projection operators for Cu and oxygen

states, respectively.
Hamiltonian (20) is projected on the AF-ordered Neel state by means

of the following definitions:

In a unit cell where the Cu spin has {1 orientation, we define

Х-5 (21)

Va (22)

and complex conjugate at sites of the other sublattice. For the Cu spin
operators the usual Holstein-Primakoff bosonization scheme is applied
with 557 = bm. To get a better insight into the physical properties of

the system and to provide a better starting point for the treatment of spin
fluctuations, we will also decouple the charge and the spin of the oxygen
hole. This is done by means of the mapping:

LF OE (23)

УЛ (24)

at a lattice site with Cu špin 1 orientation. We also bosonize the oxygen

spin via S+,, = km- Additionally the constraints

Y# =hlnhm(l - k;tnkm), (25)
o=klkn(l — hhhm) (26)

have to be satisfied.

Within these definitions it can be seen that Hamiltonian (20) transforms

to

HT=-t 3" htuhmtkl, +ка —k!k(b +l,) —

—kmbt,bm — kLib! b + (BY, + b)) (27)
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The Cu—Cu and Kondo-type spin—spin interaction can also be presented
in terms of the new basis which gives

1

HJlb;fb‚- + 3 (bib; + b‚?b})] ,
(28)

1]

. JK
H* =37 hthi {klki(l — blbi) + blbi(l — Кв + (6 + ок)

(29)

We have set the zero of energy equal to half of the singlet binding
energy. As can be seen from(29), only the Kondo-type interaction is active
when a hole is present and it gives a positive contribution when either a k or

a b fluctuation appears (which means nothing but a parallel spin alignment
between oxygen and Cu).

;

The effective Hamiltonian constituted by H7, H“*, and H* differs

essentially from the analogous treatment of the ¢t — J model by Schmitt-

Rink, Varma, and Ruckenstein ['’] and Kane, Lee, and Read [>°] concerning
the process of stabilizing a spin fluctuation bf .

In these papers the motion

of a hole in a single-band quantum antiferromagnet is described by the

Hamiltonian

H=—t Y hluhm(bl, +bm) +

(mm')

+l5 [b;fb,- + %(b,—bj + b‚?b})] . (30)
(17)

In (30), the simultaneous occupancy of a site with a Cu spin fluctuation

and a hole is forbidden, whereas in (27) it is not, which is naturally
connected with the fact that in our case the hole is of an oxygen type.

Consider first the elementary stabilization process of a spin fluctuation

in (30) for the situation that hole and boson are diagonally neighbouring.
As can be seen from Fig. la, the hole will restore the spin configuration
after one walk on the square where in intermediatestates two bosons are

present. To restore the spin configuration without an initial boson (Fig. 1b)
one needsthree walks on the same square where now up to three bosons
are created during these walks. Thus it is the gain in kinetic energy on

the square connected with a reduced number of bosonic excitations, which

stabilizes the spin fluctuation (or magnetic polaron) in the { — J model.

In Hamiltonian (27) this scenario works as well. However, due to spin-
conditioned hopping a much stronger stabilization process starts to work.

Consider first the hole in the Neel-ordered state without any fluctuations

present. It can either create a k boson at the next site or leave a Cu-spin
fluctuation (b') behind. The first of these two processes is energetically
clearly less favourable. By the second one we have created a spin-cluster
state for which the magnetic energy ~ J? has to be paid.
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In Hamiltonian (27) the term

H = t 3 hluhm (kmbhbm + kludlubm) (31)

provides the delocalization of the hole within a region consisting of the

site with the Cu-spin fluctuation and its four nearest neighbours without

an additional cost of magnetic energy. Note that when the hole is moved
to the same site as the Cu-spin fluctuation, also a k boson is created

which prevents the Kondo exchange to become active. Thus, the kinetic

stabilization process in this model is of the second order rather than of the

fourth order, as it isin the t — J model.

A further processwhich provides the stabilization ofspin-cluster states

is also explicitly contained in (27). It is the hopping of the spin cluster itself

which is described by

Hm = £ 5" hYAklК (b + bL). (32)

As can be seen from Fig. 2, the successive operation with H"*"* on

a spin-cluster state |htb'k!) moves this state to the next nearest site with

an intermediate creation of a k boson indicating the large effective mass of

these clusters.

We have checked our results in a one-dimensional model, restricting
ourselves to the subspace with only one b boson present. We have found

Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b)
Walk on a square when no fluctuation is initially present.
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that already in this simplified model ~ 70% of the ground state belongs to

a coherent spin-cluster state |(h*k*b%),) with the wave vector q, whereas

1п Ше # — J model no spin polaron formation in 1D is possible.

4. CONCLUSIONS

We have discussed the motion of a single hole in the large U limit

of a single- and a three-band Hubbard model, respectively. It has turned
out that the dynamical processes stabilizing a spin fluctuation are basically
different in the twosystems. To account for the spin-conditioned hopping in

the three-band model we have derived an effective one-band Hamiltonian

which describes the motion of only oxygen holes. A spin fluctuation in

this model is stabilized by a second-orderprocess rather than a fourth-order

process like in the t — J model. Therefore a question arises whether the

t — J model is appropriate to describe the low-energy physics of cuprate
superconductors. Especially the experimentally observed results such as

electronic phase separation become clearly more pronounced in a three-
band than in a single-band model.
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ERINEVUSED UHE- JA MITMETSOONILISE HUBBARDI

MUDELI VAHEL

Gotz SEIBOLD, Ernst SIGMUND

On uuritud iihe- jakolmetsoonilist Hubbardi mudelit suure U piirjuhul
ning leitud, et spinnfluktuatsioonide stabiliseerumise osas erineb aukude

diinaamika oluliselt mélemas mudelis. SeetGttu on esitatud alternatiivne

késitlus kolmetsoonilise mudeli kujutamiseks iihetsoonilise efektiivse ha-

miltoniaani kaudu, mis kirjeldab hapniku lisaaugu liikumist erinevalt tava-

lisest kujutamisest, kus Cu—O singleti iilekandumine taandub ainuiiksi Cu

augu liikumisele.

РАЗЛИЧИЯ МЕЖДУ ОДНО- И МНОГОЗОННОЙ МОДЕЛЯМИ

ХАББАРДА

Гэц ЗАЙБОЛД, Эрнст ЗИГМУНД

Исследованы одно- и трехзонная модели Хаббарда в пределе
большого (7. Найдено, что в части стабилизации спиновых флуктуа-
ций динамика дырок в обеих моделях существенно отличается.

Поэтому предложен альтернативный подход к изображению трех-
зонной модели через эффективный однозонный гамильтониан,

описывающий движение добавочной кислородной дырки в отличие

от привычного изображения, где перенос Си-О-синглета редуциро-
ван к движению единственной Си-дырки.
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	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
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	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
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	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
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	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
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	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
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	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).
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	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
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	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.
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	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.
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	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
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	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.
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	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
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	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
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	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
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	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
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	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
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	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
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