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Abstract. To describe the dynamics of holes in CuO, plancs of high-T,,. supcrconductors we analyse
the two-dimensional ¢-J model supplemented with the interaction of holes with nonpolar optical
phonons. Elecmentary cxcitations of this modcl arc treated nonadiabatically within the spin-wave
approximation on an infinitc squarc latticc by mcans of an itcrative Lanczos algorithm. For

paramciter valucs relevant for high-T,. superconductors we have found a sharp crossover in the

ground state from a ncarly free cexcitation for small holc—phonon coupling Ю а self-trapped
cxcitation for large holc—phonon coupling. In the vicinity of this crossover cocxistence of thesc two

types of states and ferron—phonon complexes has been found. We also analysce the dependence of

the critical holc—phonon coupling strength on the exchange constant J.

Key words: high-T7,. supcrconductivity, -/ modcl, polarons.

1. INTRODUCTION

The discovery of high-temperature superconductivity ['] has led to

intense experimental and theoretical studies. A theory describing
perovskite-like superconductors should include their most important
properties, as there are the strong electron correlations and a quasi-two-
dimensional band structure. It is usually believed that superconductivity
takes place in copper-oxide planes which are a common structural element

of most high-T,. materials. Conduction in these planes is mainly duc 10

hole-like charge carriers introduced by doping, although there are also

examples of electron-doped systems. It has been suggested that the two-

dimensional Hubbard model can describe the charge carrier transport in

the CuO,, planes of high-T,. cuprate superconductors [2]. The most realistic

model of this kind is a three-band Hubbard model taking into account the

Cu-dx2 2?
and the O-p, y

orbitals of copper-oxide planes [3]. In the limit

https://doi.org/10.3176/phys.math.1995.2/3.19

https://doi.org/10.3176/phys.math.1995.2/3.19


298

of large electron correlations and therefore large Hubbard repulsion this
model can be mapped onto the /-J model [4] on a square lattice. In the case

of hole doping the Hilbert space is restricted to states without doubly
occupied lattice sites. Electron correlations are transformed into an

antiferromagnetic interaction between electrons on neighbouring sites.

Without doping, i. e. for exactly one electron per lattice site, this model
reduces to a spin-1/2 Heisenberg model. The ground state of the

Heisenberg model cannot be described exactly for large lattices, therefore

such approximations or numerical methods as MC simulations [s] must be

used. Spin-wave approximation yields surprisingöly accurate results, as can

be shown by comparison with MC results [7]. At low temperatures
undoped and low-doped samples of perovskite superconductors are

antiferromagnetically ordered [7], so the usage of spin-wave
approximation can also be justified by experiment.

A number of unusual properties of high-T. materials has led ю а

supposition that a purely electronic mechanism of the Cooper pairing
plays the main role in a superconducting transition. Nevertheless, there are

a number of experimental evidences that the influence of hole-phonon
interaction cannot be neglected for a proper descrigtion of the transport
properties of these crystals (for reviews, see e.g. [ ‚9l). For example, a

small but nonzero isotope effect ['9, anomalously strong changes in the

lattice dynamics at the superconducting transition ;' 1,123, singularities of

the guadrupole freguency in NOR experiments (3 !3], which are especially
sensitive to changes in field gradients due to local deformations, or the

correlation between T, and small low-temperature lattice distortions ['4]
show the important role played by the lattice in high-7. materials. As

possible mechanisms of the hole—phonon coupling the interaction with in-

plane or apical oxygen modes has been considered (e.g. in [>-17)).
Because of heavy masses of charge carriers and low carrier density, the

Fermi energy in cuprate oxides is unusually low. Thus, the adiabatic

approximation which requires that the phonon frequency be much smaller
than the Fermi energy, is no longer justified (see, e.g. ['®] and references

therein) and the phonon modes must be taken into account

nonadiabatically.
To understand the superconducting properties, the knowledge of the

normal state is essential. Therefore the first step should be the investigation
of a single hole in a copper-oxide plane, which is equivalent to the limit of

low doping. Of special interest is whether the hole has a polaronic character

and whether there exists a more or less sharp transition from a free to a self-

trapped hole if the electron—phonon coupling is increased.

In this paper, to describe the dynamics of a single hole we use the

Holstein-z-J Hamiltonian which includes a linear coupling of the hole

density to effective local optical phonon modes. This Hamiltonian can be

derived from the well-known Peierls—Hubbard Hamiltonian in the limit of

large Hubbard repulsion []9]. Low-lying excitations of the model are

investigated for the parameters presumably realized in La,CuQO4. То

calculate bound hole-magnon—phonon states, we use е spin—wave
approximation [2%-22] and an iterative Lanczos algorithm [23, 241.



299

2. MODEL AND CALCULATION PROCEDURE

The Holstein-/-J Hamiltonian for a square lattice as considered in this

paper can be written in the form [ @=l)

H = Ht—J+Hh-ph+th’

H ,=-tPY ‹' ]

1271 Z m+a, сбто? * žzsm+a Sm'
тас та

()

= / t
Hypp 5 NSOX (1-n_) (B,+B),

m

—

t

H,=Q)BB.

m

Here H,; is the t-J Hamiltonian, ¢t and J are the bare hopping matrix

element and the superexchange constant, respectively, and P is the

projection operator onto the subspace of the Hilbert space without doubly

occupied lattice sites. The Fermi operator c:n
5

creates an electron on the

site m = (m,, my) of the square lattice with the spin label 6 (¢ = +1). The

s%in 2perator smT consists of sfn = zocc;fnacmo/2 — апа

5 = й +1059° =сс . The summation over ais carried out
m m m mO m,-

over nearest neighbour sites only. H„ describes local optical phonon

modes with the frequency Q ап В:\“ creates a phonon at the site m.

m = zcc:nccmo
is the electron density at the site m and Hj,_,, displays

a Holstein coupling of the hole density (1 — ng,,) to local phonon modes,

where S is the hole—phonon coupling parameter. Terms of the static hole—-

hole interaction resulting from the mapping procedure are constant for the

considered one-hole states and have been omitted in Eq. (1) [25 ].

The spin-wave approximation, which has been shown to syicld
remarkably accurate results for the Heisenberg and the /-J model [629—27],
is introduced with the help of the following formulas [22]:

+1
2—

+1 05t -1 -t 4 T

S=P bP+b @P, т - Сщ) ›

n
z

_

т _m
_

T
S=€ [ > bmbm] (2)

1 M

with ®_ = ‚/1 btb
,

Р° = =(1+се!!”), П= (Ё‚ Ё).тmmm 2 a a
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Here a is the lattice constant and the spin—wave operators by, satisfy the

commutation relations [b ,
bJr ]= 6 n > and [b ,b ]= 0.

ml. m, m,, m, .ml m? m
;

The vacuum state for the spin-wave operators is one of the two classical

Néel states, lav >: bml N>=o. The two possible Néel states are

decoupled in the thermodynamic limit, thus it is sufficient to investigate

only one of them.

After the substitution of Egs. (2) into the Heisenberg part of H,_j, the

spin—-wave approximation means the neglecting of the terms ofIghe third

and higher order in by,. The obtained quadratic form in by, and b_ can be

diagonalized by the unitary transformation [22]

1+
_

t,t .

1 k
T = exp [Zak (bkb_k—bkb_k)] with o, = šln [l_;'_y;]

k

1 ik
and Yı = zZe' а (3)

а

by and bl are the Fourier transforms of by, and b:rn, respectively. After

this transformation the Hamiltonian H (see Eq. (1)) reads

mt
—

tH=THT=lt Y[n Ao(u . +v)+he| +

mna :

J t t t t
+5 Yo b b +QYBB + ./SQthhm (B, +B_), 4

mn m m

where hrn = ZGPZcm5
creates a hole on the site m. upy,, vy, and ©

are the Fourier transforms of cosh(2Zo), —sinh(2oy), and 4‚/1 —7‚2(,
respectively. A more detailed derivation of Hamiltonian (4) can be found

in [l9, 22]_

Since Um+a + Vm and Om decrease very rapidly with the increasing of

|m|, it is sufficient to keep only the components with m = (+a,o), (o,+a)
for Um+a + Vm and those with m = (0,0), (ta,+a), (+2a,o), (o,+2a) for

Om in the calculation; for symmetry reasons Om =0 for m=(+a,o),
(o,+a) and Um4a + vm = 0 for m = (0,0).

Symmetries can be used to classify the eigenstates of the Hamiltonian.

The eigenstates are characterized by the z component S, of the total spin,
the two-dimensional wave vector k and an irreducible representation of

the corresponding wave-vector group. By a given set of these quantum
numbers a subspace of the Hilbert space is determined. Within this
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subspace the lowest eigenstate of the Hamiltonian can be determined with
the help of the following modified iterative Lanczos procedure[zz]:
starting from an initial state |i } from one of the subspaces mentioned in

each step of iteration, the procedure creates a final state |f ) according to

iy =l, E = (101)), V = (H-E) . (5)

Vis the normalization constant which follows from {f|f} = 1. Now the

energy is minimized in the two-dimensional subspace spanned by i) and

[f) and the obtained state li’) is used as the starting state in the next step
of the Lanczos iteration. Since the iteration consists mainly in the action of

the Hamiltonian Hon li), |f) has the same quantum numbers as |i ).
Thus the symmetry of the starting state is not changed during the iteration.

Bound hole-magnon—-phonon states сап be represented in the form

2 ikL_ 1
ls) = Jšzz > z e Gfißs(a,v‚u, {n,}, {m }) x

oLyvit {n} {m }
ViR

t t t t t
xßLa+ m, '"BLG+ mubLa+ nbLa+ "thc lvac), (6)

where Is) = li), li’) or |f). L_ labels the sites of the spin sublattice G

in the Néel state |A), |vac) is the direct product of the phonon vacuum

state and the Néel state. After substituting Eq. (6) into Egs. (5), we obtain

formulas showing the dependence of the expansion coefficients Dy of the

final state lf) on the expansion coefficients D; of the initial state |i)
[22’ 28]. These equations can be used for the numerical procedure.

Starting with an initial state with a finite number of nonzero

coefficients D;, the number of components of the states ls) grows rapidly
during iteration. Therefore, in each step of iteration procedure (5) we

restrict expansion (6) of i’} to the j components with the largest
amplitudes. In this work j = 100 is sufficient. After renormalization this

restricted state is used as the initial state in the next step of Lanczos

procedure (5). As follows from Egs. (5), this modification as well as the

original procedure gives an upper bound for the lowest eigenvalue of the

energy at given quantum numbers if the projection of the starting state

onto the ground one is nonzero (for more details see [22' 25]). Naturally,
the special form of trial states (6) allows us to calculate only bound hole-

phonon—magnon states (one-particle states) and not two-(or more)-particle
scattering states.

3. RESULTS AND DISCUSSION

To determine the properties of cuprate superconductors it is necessary to

first of all derive the values of the model parameters J, ¢, 2, and S. The

mapping procedure ['229] used to derive the ¢-J-Hamiltonian allows us to
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estimate £ and J from the known parameters of La»CuO4 (30- 311, Estimations
for t range from 0.3 to 0.4 eV and for J from 0.1 to 0.15 eV. Neutron scattering
experiments [7] have confirmed this value of the superexchange constant J.

The frequency €2 of local optical phonons can be measured by Raman and IR

spectroscopy (see e.g. [9]‚ for LayCuO4 £ isin the range from 10 to 70 meV).
Estimations of the hole-phonon couplinš strength are still controversial, but it

is believed that Sis between O.l¢and ¢ [ '].
In the calculations reported here we used J/t= 0.05-1.0, O/t= 0.15,

апа S/t = 0-7.5, which covers the range of the parameter space relevant for

high-T,. superconductors.
To understand the Holstein-#-J model, the pure #-J model 1$ ап

appropriate starting point. The energy spectrum of H,; (see Eq. (1)) for a

single hole consists of the energy bands characterized by definite values of

§,. Each of these bands forms the edge of a continuum of hole-magnon
scattering states [2* 2°]. For J/t <0.053 the ground state has §_=>3/2 and

the hole is surrounded by a cloud of ferromagnetically ordered eléctron spins
forming a so-called ferron [22’ 25 '32]. In the range of the J/t investigated here

the lowest one-hole band has S, = 1/2. Its ground state has been found at the

edge of the magnetic Brillouin zone at k, = (¥n/g, +7//a) and it is fourfold

degenerate, while its maximum occurs at k=o [2s]. Only for J/t> 0.92 the

ground-state energy is given by the 5,=1/2 band in the entire Brillouin zone.

For smaller J/t the lowest energy in the middle of the Brillouin zone is given
by §,=3/2. In this paper, we are mainly interested in the behaviour of the

global ground state for the parameters relevant for copper oxides, thus, we

restrict our investigation to the S,=l/2 band only.
The influence of the hole—phonon coupling on the ground-state energy

can be seen in Fig. 1 for the case of J/#=o.3 and Q/t=0.15. For s=o, the

electronic system and the vibrational system are decoupled. For a small

hole-phonon coupling S, the ground-state energy decreases slightly with
the increasing of S and the number N, of the phonons escorting the hole

increases, although Np;, is much smaller than one (see Fig. 1). In this

region, the ground state still has the wave vector k=k,. Its wave function

is still similar to the wave function in the decoupled case. This behaviour

is typical of a nearly free quasi-particle [33.34,
The character of the ground state changes drastically near a critical

value S.=l.4¢. Above S, the ground-state energy decreases much faster

and in the limit of large S it approaches S +E), where Eg is a constant. For

S> S, the number of phonons N, connected to the hole grows rapidly and

is much larger than unity alreacfy for the S only slightly larger than S. In

the limit of large S, N, approaches 5/Q2, which indicates that the ground-
state wave function is the phonon-relaxed localized state.

Our method allows us to consider not only the lowest state but also well-
defined metastable states. If the starting state has a sufficiently large overlap
with some metastable state, the Lanczos procedure will 'stick’ in this state.

We used two essentially different states as startin% states: the mobile bare

hole state and the localized phonon-relaxed state [ s]. The results obtained

indicate that near S, the respective energetically higher state coexists with

the lowest state as a well-defined metastable state (Fig. 2).
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Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the

number ofescorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3,
O/t = 0.15. The hole—phonon continuum edge is shown by the dottedlinc.

Fig. 2. Coexistence of self-trapped(O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
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For k#Kk__ the situation is different. The inclusion of optical phonons
of the freque%cy C, which is sufficiently small (e.g. J/t=o.3, Q/t=0.15),
vields a situation, where single particle states are the lowest only in a

region around k,. In the other parts of the Brillouin zone the energetically
most favourable states can be constructed from a hole-magnon state with

the wave vector k, and a phonon with a suitable wave vector. The edge of

the hole-magnon—phonon continuum, as indicated by the dotted line in

Fig. 1, is formed by these scattering states. For J/=0.3, €/t=0.15, and

small S the lowest single-particle state at k=o lies within the hole—-

magnon—phonon continuum. It has N, =1 and thus resembles an

exciton-phonon complex 3334 Ats =Öp.g7t this state splits off from the

bottom of the ferron-phonon continuum. It is transformed continuously
into the self-trapped state so that it is impossible to find a break point in

the respective energy curve in Fig. 1, in contrast to the ground-state curve.

Рог 5>5 the bandwidth of the lowest single-particle band is very small,
which 1s usual for a self-trapped quasi-particle.

Figure 3 shows the dependence of the ground-state energy on the hole—-

phonon coupling strength S for different values of the exchange parameter
J. For an increasing J the energy of the free-hole state (for small 5)
increases as expected [l3’ 22, 25] and the dependence on S becomes more

pronounced. The ground-state energy in the self-trapped region of the

parameter space depends only slightly on J. The critical hole—phonon
coupling S, and the size of the coexistence region decrease with increasing
J. For J/t = 0.7 the coexistence region vanishes, i. e. the Lanczos

procedure converges to the same final state independent of the starting
state. The transition is smeared out and the behaviour of the quasi-particle
resembles that of a vibronic exciton.

Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.
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In the hole-phonon system no coexistence of free and self-trapped
states has been found in the two-dimensional case, but is expected tobe
inherent in the three-dimensional system [36]. The observed coexistence in
the two-dimensional hole-phonon-magnon system indicates that the

inclusion of magnons leads to essential changes in the properties of the

system.
In this paper, we have shown that the spin-wave approximation

together with an iterative Lanczos procedure allows us to determine the

ground-state properties of weakly doped cuprate superconductors within

the Holstein-z-J model. For the parameters relevant for La,CuO,4 we have

found a transition from a free-hole state to a self-trapped state at large
values of the hole—phonon coupling parameter. Both states coexist in a

region around S, for small J/t. This behaviour, rather unusual for the two-

dimensional hole-phonon system, is observed due to фе inclusion of

magnons in the model.
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POLARONID ELEKTRON-FOONON-INTERAKTSIOONIGA
TAIENDATUD KAHEMOOTMELISES ¢-J-MUDELIS

Jorg SABCZYNSKI, Aleksei SERMAN, Michael SCHREIBER

On analiiiisitud aukude diinaamikat korgtemperatuursete iilijuhtide
CuO»-kihtides kahemdotmelise ¢-J-mudeli baasil, mida tdiendab laengu-
kandjate vastakmOju mittepolaarsete optiliste foononitega. Selle mudeli

elementaarergastusi uuritakse 16pmatus ruutvores ilma adiabaatilise lihen-

duseta, kasutades spinnlainete lahendust ja Lanczosi iteratsioonialgoritmi.
Parameetrite intervallis, mis vastab korgtemperatuursetele iilijuhtidele, on

leitud pohiseisundis jdrsk krossover ndrga augu—foononi vastakmojuga
kvaasivabalt ergastuselt tugeva vastakmojuga iselokaliseerunud ergas-
tusele. Krossoveri punkti ldheduses on avastatud nende kahe ergastuse ja
ferroon—foonon-kompleksi kooseksisteerimine. On analiiiisitud augu—-
foononi vastakmdju kriitilise konstandi s6ltuvust vahetuskonstandist J.

ПОЛЯРОНЫ В ДВУМЕРНОЙ +~J-MOJIEJH,
ДОПОЛНЕННОЙ ЭЛЕКТРОН-ФОНОННЫМ

ВЗАИМОДЕЙСТВИЕМ

Йорг САБЧИНСКИ, Алексей ШЕРМАН, Михаэль ШРАЙБЕР

Динамика дырок в СиО,-плоскостях высокотемпературных

сверхпроводников анализируется на основе двумерной !-/-модели,
дополненной взаимодействием носителей с неполярными оптичес-

кими фононами. Элементарные возбуждения этой модели иссле-

дуются на бесконечной квадратной решетке 6e3 применения
адиабатического приближения, но с использованием спин-волнового

приближения и итерационного алгоритма Ланцоша. Для интервала

параметров, соответствующего высокотемпературным сверхпровод-
никам, обнаружен резкий кроссовер основного состояния от почти-

свободных возбуждений при слабом дырочно-фононном взаимо-

действии K автолокализованным — возбуждениям при — сильном
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взаимодействии. В окрестности TOYKM Kpoccoßepa обнаружено
сосуществование этих двух типов возбуждений и феррон-фононных
комплексов. Проанализирована зависимость критической константы

дырочно-фононного взаимодействия от обменной константы J.
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	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.

	WANNIER FORMULATION OF THE LEE-LOW-PINES TRANSFORMATION
	PSEUDO-JAHN-TELLER EFFECT AND OFF-CENTRE IONS IN CRYSTALS WITH SOFT LATTICE MODES
	INVESTIGATION OF THE FORMATION OF THE LOWTEMPERATURE MAGNETIC AND STRUCTURAL ORDER IN A JAHN-TELLER CsCuCl3 CRYSTAL BY THE EPR OF FRAGMENTS OF A MAGNETIC STRUCTURE
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).

	EQUILIBRIUM DISTORTIONS OF A DEFECT WITH AN INITIAL ELECTRON STATE OF t2 SYMMETRY: ROLES OF THE NONLINEARITY OF ELASTIC FORCES AND OF STATE OCCUPANCY
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state

	STATIC JAHN-TELLER MODEL FOR Cr2+ (d4) CENTRES OF TETRAHEDRAL SYMMETRY IN ZnS
	SILVER IMPURITIES IN CUBIC METAL FLUORIDES. JAHN-TELLER EFFECTS IN 4d95s1 AND 4d9 MULTIPLETS
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
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	THE BERRY PHASE OF ANE Oe SYSTEM
	DISTORTIONS OF VACANCY COMPLEXES IN n-GaAs AND THEIR REORIENTATION UNDER UNIAXIAL STRESS
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
	Untitled
	Untitled
	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Characterization of the samples under investigation

	PHOTOINDUCED INSTABILITY OF MnO4 MOLECULARDEFECTS IN POTASSIUM IODIDE
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.

	INVESTIGATION OF VIBRONIC INTERACTION OF Cu(II) lONS IN CsMgCl3 SINGLE CRYSTAL
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce

	DYNAMICS OF JAHN-TELLER IONS IN LAYERED OXIDES
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.

	ORIGIN OF GAP ANISOTROPY AND PHONON RENORMALIZATION
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5

	TWO-BAND ELECTRON-PHONON INTERACTION IN FULLERENE IN THE BOND-CHARGE MODEL
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.
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	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
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	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
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