
Proc. Estonian Acad. Sci. Phys. Math., 1995,44, 2/3, 252-265

252

ORIGIN OF GAP ANISOTROPY AND PHONON

RENORMALIZATION

Andreas BILL?, Vladimir HIZHN YAKOV®, and Ernst SIGMUND*

* Institut für Physik, Technische Universität Cottbus (Technical University ofCottbus), Postfach

101344, 03013 Cottbus, Deutschland (Germany)
b Tartu Ulikool (University of Tartu), Tidhe 4, EE-2400 Tartu, Eesti (Estonia); Eesti Teaduste

Akadeemia Fiiisika Instituut (Institute of Physics, Estonian Academy of Sciences), Riia 142,
EE-2400 Tartu, Eesti (Estonia)

Received 2 December 1994,accepted 17 April 1995

Abstract. The anisotropy of a superconducting gap is studied for two different hole-lattice

interactions characteristic of high-T. superconductors. The first one is the short-range distortive

coupling and the second one, the long-range part due to imperfect screening of the Coulomb

potential. Then the influence of different symmetries (s wave, d wave...) of the gap on the

renormalization of¢ — O phonons is studied. The results are compared with Raman measurements.

Conclusions about the symmetry of the gap and the strength of the hole-lattice coupling in high-Tl,
materials are presented.
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1. INTRODUCTION

One of the most characteristic features common to all cuprate high-T,
superconductors is е existence of doping-dependent Jocal

inhomogeneities observed both in the electronic and the lattice subsystem.
In the first instance it was theoretically proposed ['* 2] and experimentally
observed [**] that the long-range antiferromagnetic (AF) ordering is

locally destroyed upon doping perovskites (electronic phase separation
(PS)). In the second case, several experiments [>~7] have shown that the

local structure of the lattice strongly deviates from the one imposed by
the average crystal symmetry. These facts give hints on the structure

and the dimension of quasiparticles (dressed holes), which determine the

properties of the normal and the superconducting state. Below we discuss

how these inhomogeneities are related 10 electron—lattice interaction and

what the consequences are for the anisotropy of a superconducting gap and

the renormalization of the phonon energy below Т.
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The first aspect considered here has a purely electronic character. It

concerns the existence of microscopic inhomogeneities in the magnetic
structure of CuO; planes. All cuprate systems show an AF ordering of Cu

spins below the Neel temperature 7'y in an undoped case. When doping or

oxidizing a parent compound of a high-7.. superconductor (e.g. La;CuQy,
YBa;Cu3Og ...), holes appear in CuO, planes. It has been shown in
the framework of mean-field approximations (Hartree-Fock and slave-
bosons) of the three-band Hubbard model [> *] that doped holes destroy
locally the AF order through the formation of spin-polarized clusters. One
such magnetic quasi-particle is made up of about five toten polarized
Cu spins. The dynamics of a hole is here determined by free motion
inside the cluster, whereas the last hole is hardly mobile. The ever more

doping of the system leads to an increase of the hole concentration in the

planes and the clusters begin to overlap. Then the charge carriers move

into the low-dimensional (d < 2) metal-like network formed this way.
Above a critical concentration (percolation threshold) the clusters percolate
and conductivity or superconductivity sets in. In this picture the system
undergoes a percolative phase separation both in hole-rich and hole-poor
domains. An important feature of this PS is that, in contrast to the chemical

phase separation (clustering of excess oxygens), it is driven by a pure
electronic mechanism. For a review on PS see [* ?].

The second aspect that gives hints on what kind of quasiparticles are

formed in high-7, compounds concerns the lattice structure. It has been

observed by neutron diffraction [> '°), EXAFS [®] or NQR [’] that for
most of the doped cuprate systems the local structureof the system differs
from the average crystal symmetry in some concentration range. CuOj
octahedras are tilted along different axes [*] and the Cu—O(4) bond (apex
oxygen) shows two typical distances [®7]. All these effects can be seen

tobe related to the presence of holes in the plane and to some extent on

the apex oxygen. Furthermore, they are believed tobe dynamic rather than

static in the sense that they are correlated to the particles’ motion. From the

dimension of lattice inhomogeneities (several unit cells) one can infer that

holes form intermediate polarons containing five toten Cu atoms ['']. This

is in full agreement with the concept of spin-polarized clusters and with the

fact that holes can move only in a low-dimensional network, since it can

be shown that the intermediate polaron is the only stable quasiparticle in

this case. The dynamics of a hole with respect to lattice deformations is

thus given by the hole’s ability to move through the crystal, whereby an

important part of its polarization is carried with it.

An analysis of the structure of high-7, superconductors presented above

shows that they have characteristic features that do not occur in usual

metals. This is reflected in the properties of the hole—lattice interaction. In

the low- and the intermediate doping regime we assume that holes move in

a quasimetallic percolation network imbedded in the insulating AF system.
Thus the particles interact mainly with the ions of the insulating domains,
which results in an essential coupling to optical modes. Furthermore, the
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ionic character of high-T. compounds implies that the main contribution
to short-range hole—lattice interaction comes from the variation of the site

and Cu—O hopping energies. Since the holes are primarily located on

the oxygens in CuO, planes, they are situated on noncentrosymmetrical
positions of the crystal. As a consequence, as observed, they can induce

static distortions of the lattice in their near surrounding.
In addition to the short-range part of interaction there is an important

long-range contribution to the coupling as well. This follows from the fact

that the concentration of charge carriers (holes) is small in these systems
and that they are low-dimensional systems. Consequently, there is an

incomplete screening ofhole—lattice interaction in cuprate superconductors
and the long-range part must be taken into account.

The hole—lattice interaction will be influenced in (at least) threerespects

upon changing the doping. Firstly, the increase of the hole concentration

and thus of the dimensionality of the network (d —2) implies a better

screening and a decrease of the long-range part of interaction. Secondly,
the polaron becomes larger because of the growing of the allowed region
in which the particle can move. For this reason, finally, it is mainly the

nondiagonal (transitive) part of short-range hole—lattice interaction that will

be affected by doping.

2. ANISOTROPYOF THE SUPERCONDUCTING GAP

The success of the BCS model (k-independent pairing potential
Vkk+) for the description of conventional superconductors supports the

experimental observation that in most of them the gap is almost constant in

the whole Brillouin zone (A ~ A). In high-T, superconductors, however,
it has been observed by ARPES ['?] or PCS (point conduct spectroscopy)
['3] that Ay is strongly anisotropic. Anisotropy has two components. The

first one is between the ab plane and the ¢ direction and the second one,
in the ab plane itself. In what follows we study only the structure and the

symmetry of the second kind of anisotropy.
The superconducting gap is defined by Ax = Эsк Икр < C-kyCk'+ >

and it is the solution of the BCS gap equation:

tanh (*Ü—lš“)
Ak= - VikDxe with Dy =Ар —О. (1)

k’
2 Ekl

Ек = \/ек? + Ax?. From the definition of Ax it is obvious that this

function is k-independent if Vi is k-independent. Thus, anisotropy is

directly related to the pairing mechanism of quasiparticles (holes). On

the other hand, the symmetry properties of the gap function are not only
determined by Vi but also in an essential way by the structure and the
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filling of the band through Dx in (1). Here we consider the gap anisotropy
in the ab plane for short-range and long-range interactions separately and

study the symmetry properties of the solutions of the gap equation for

different fillings of the band. For numerical calculations we consider one

electronic band,

ек = t{2(cos(k,a) + cos(kya)) — 4t, cos(k,a) cos(k,a) + (2)

+ 2tpcos(k.c) +4'},

taking into account the nearest (¢) and the next-nearest ({;) neighbour
intralayer and the interlayer (¢,) hopping to fit correctly the band structure

calculations for the YBa,Cu3o;_; system ['4]. The parameters are set to

t = —o.2seV,t; = 0.45,and t, = 0.1 ['> '6].
The short-range electron—lattice interaction is mainly of a distortive

type and thus affects the near surrounding of the unit cell where the hole
is located. The pairing induced by this interaction can be modelled by the

following phenomenological potential:

Vi = Vi [cos(gz) + cos(g,)] + V 2 cos(qz) cos(qy), (3)

(g =k' —k). The term in V| corresponds to the nearest neighbour and the

one in 1, to the next nearest neighbour hole-hole interaction. As one can

see, the anisotropy of the gap for short-range interaction will be a sign of
the lattice structure of the CuO, plane. From the structure of this function

the possible solutions can have an s-wave as well as a d-wave symmetry
(for definition see Sec. 3.2), depending on the values of the parameters.
The constants V| and ; have been calculated for the interaction with

optical modes and by taking into account the local Coulomb repulsion in

a phenomenological way ['’]. In Figs. 1 and 2 stable solutions of gap
equation (1) for two different fillings are depicted. In the first case the

Fermi surface is closed around the I' point, whereas it is open in the second

one. The gapresulting from thispairing potential shows a strong anisotropy
with an s-wave and a d-wave symmetry, respectively. Only the second case

can fit the experimental results (maxima at the points (£, 0), (0, +7) апа

minima along the lines k, = *£,; the gap was not measured at the centre of

the Brillouin zone). Nevertheless, a morecareful study ofthe gap equation
is needed for this potential, since other types of solutions can be stable, too.

Furthermore, a microscopic model for the holes and the phonons in CuO,

planes has been studied in ['®]. It has led 10 a pairing potential for which

(1) has only s-wave solutions for the fillings studied.

The nontotally screened long-range hole—lattice interaction which is at

least partly due to a microscopic phase separation and which corresponds
to the interaction with long-wave optical modes, can be modelled by the

potential ['°]

V.
Ин

92 +д+ к?
®
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Fig. 1. Gap function atT'= 0 for Eg. (3) with W = —0.19, V2 = —0.34,4’ = —2.22. Energies
are in meV. Equipotentials are shown in the (k,, ky) plane.

Fig. 2. Gap functionatT'= 0 for Eg. (3) with V; = —0.29, V 2 = —0.52,w = —1.35. Energies
are in meV.
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withq = k' — k. «(« kp) is the screening factor of interaction and

it depends on the concentration of doped holes. Since Vs has a Cx
symmetry axis perpendicular to the (k, k,) plane in the Brillouin zone, the
structure of the anisotropy of the gap is a sign ofthe k dependence of the
electronic density ofstates. Again typical stable solutions for two fillings
are depicted in Figs. 3 and 4.

As one can see, the solution for p' = —1.35 (which is the filling for
which the ARPES experiments were done ['?]) has the properties of the
measured gap. One can also find d-wave-type solutions of the gap equation
for the long-range hole-lattice interaction. However, for all the fillings
studied the stable solution has an s-wave symmetry. The solutions were

calculated only for one value of the doping-dependent screening factor «.

A more extensive study of the gap as a function of this parameter is in

progress.

3. PHONON RENORMALIZATION BELOW 7.

It is generally recognized that the superconducting gap is strongly
anisotropic inhigh-T, materials. However, there is much controversy about
the symmetry properties of the function (s wave, d wave or something
else?). From the theoretical point of view this reflects the fact that the

origin of the pairing mechanism is still an open question. Indeed, some

theories predict an anisotropic gap function with a d wave [2°], others

with an s wave ['> '® '] and some with a mixed symmetry [*']. Since

experimentally it is not possible at the present stage to unambiguously
determine this symmetry, it is useful to find an indirect way to obtain

information about the k dependence of the gap. One possibility is to study
another peculiar property of high-7, materials that is directly affected by the

gap anisotropy, namely phonon renormalization below T,. In what follows

we give a general analytical derivation of this renormalization. We then

study the influence of several types of anisotropies on the shift and the

broadening of q = 0 phonon lines and compare the results with those of

Raman experiments.
The renormalization of the phonon energy below 7. is related to the

fact that in the superconducting state the electronic density of states (DOS)
is modified due to the appearance of a gap. To study how this change
affects phonons let us suppose in the first step that the gap is constant,
Ax = A (BCS model). In this case the DOS exhibits a gap of the width

2A and diverges at the upper edge of it. If 2A is much smaller than the

characteristic phonon energy w,, one expects that the change of the DOS

affects but weakly the phonon spectrum. This is the case encountered in

most of the conventional superconductors. On the other hand, if2A has the

same order of magnitude as w,, the effect should be essential. This is the

case of the high-T, superconductors for which 2Amax —& w. (~ 30 meV for

YBa,Cu;o,). For these systems a phonon with the energy below 2A cannot
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Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies
are in meV.

Fig. 4. Gap function atT' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies
are in meV.
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scatter charge carriers of the superconducting condensate and the phonon
line shifts to smaller energies without changing its width. In the opposite
case new scattering channels are open in the electronic spectrum since

the phonon energy is high enough to break Cooper pairs. This implies a

broadening of the phonon line and a shift to higher energies. The nearer the

phonon energy is to the gap 2A, the stronger the effect should be because

the electronic DOS is singular at the upper edge of the gap. If one has

a system with phonons’ energy near 2A (some below and others above

it), one can determine in this way the approximate value of the gap. This

method has been used to estimate A in RBa,Cu;o; (R is rare earth) [22].
However, in these systems the gap is strongly anisotropic and the situation

is thus more complicated than sketched above.
If the gap has a strong k dependence, the renormalization of the phonon

energy will depend on the structure of anisotropy. This follows from

the fact that the symmetry of the gap function affects the behaviour of

the electronic DOS in the range 2A~ around the Fermi energy &.. For

example, the pure s-wave isotropic case presented above shows a gap in the

DOS and a singularity at the upper edge. On the other hand, for a gap with

the d-wave symmetry there are still allowed states at any energy around

er. The electronic DOS decreases continuously to zero when approaching
Er. There is thus no gap in the strict sense for the DOS and the singularity
at 2Amax is damped [?]. It is important to notice that it is not only the

presence of nodes in the gap function that determines the behaviour of

phonon lines below T, but their localization in the Brillouin zone as well.

As a consequence, for each symmetry of the gap the renormalization of

phonons in the superconducting state will be different.

3.1. Analytical derivation

The total Hamiltonian of the system is given by

° Н=И.+И, +Иг . (5)

The first two terms,

Ho + = Yench +3va (abea +5) (6)
k,o va

describe the zero-order Hamiltonian. 1. and /I], are the electronic and the

lattice Hamiltonian, respectively. We consider here a single electronic band

for simplicity, but the generalization is straightforward ['* '?]. The last part
of the Hamiltonian is linear hole—lattice interaction

Her = Z g„(k,q)cš'ack+q,„b£q + А.с.
. (7)

ko,vq
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To calculate the superconductivity-induced renormalization of phonons
one has to modify the Hamiltonian so as to include in the zeroth order the

appearance of the Bgap. To this aim one adds to and subtracts from (5) the

following terms [!8]:

; Ha = Zk: Akchc[m + А.с.
,

(8)

Нх = Z Xkc{(‚gcka , (9)
k,o

õHy = > Swwoblgybva »
(10)

qı

6На = >D õg(k,a)ek,ckraodlgt+the + — (1])
k‚g Vq

The first two terms describe the superconducting (gap) and Hartree-Fock

mean-fields. The two next terms describe the renormalization of the

phonon energy and of electron-phonon interaction. These are assumed to

be second-order effects and can be considered as small. The new zero-order

Hamiltonian can now be defined as

Но = Нзо +Н, , (12)

where

Нзс =Н. + На +H, —uN =

= >Ex (aikaik + alyan) (13)
k

and H_ = H_ + ÕŠH,, is the renormalized phonon Hamiltonian. The

electronic part Hsc is written in its diagonal formby using the Bogolyubov
operators a;, a;. The total Hamiltonian takes the form

H = Hy+ H', (14)

H = HeL—HA—Hx—õHL+6HcL )
(15)

where H.;, = Her + 6Her. The unknowns Ak, Xk» ÕWyg» and õgu(k,g)
have tobe determined in a self-consistent way [* '®]. The zero-order

Hamiltonian is chosen in such a way that it describes the superconducting
state. Thus, first of all one has to eliminate the linear electron-lattice

coupling. This is done with two unitary transformations. The first one

is a polaron-type and the second one, a Fröhlich-type transformation. By
applying them to (14) consecutively one obtains after some calculations

two coupled equations for Ay, xx (the BCS gap equation is a special case

of them), an equation for dg,(k, q), and an expression for dw,q. This last

function is obtained for any wavevector q of the phonon ['®]. Here we
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give its form only for q = 0 which is the quantity measured in Raman

experiments:

)
-

B 0 = 45D lõu(kOP—AU )— (16)
k L [(ZEk)2 — (Ww) ]

This expression takes into account the anisotropy of the gap as well as

the k dependence of the electron-lattice coupling. We are now able to

study the influence of the symmetry of the superconducting gap on the

renormalization of the phonon energy.

3.2. Numerical calculation

For the numerical study of renormalization we assume that the electron—-

lattice coupling is diagonal so that g,(k,q) = §,(q). Furthermore, we

replace the sum in (16) by an integral and w,, by a complex continuous
variable w + 7. The resulting phonon renormalization will be complex:
õww = Aww + iAyO. The shift Aw,o and the change of the linewidth

Ayw of a specific phomon is obtained for w = w,9. To calculate the

gap function we choose for Vi the pairing function which results from

short-range distortive interaction (3) with V, = 0 and to which we add
a constant term Ио. Within this model gaps with both d- and s-wave

symmetries can be obtained as stable solutions depending on the value of

the chemical potential 4 = tu’. Note that the main results presented below

are independent of the special features of the model as shown in ['®]. The

structure of the pairing potential implies that the solutions of gap equation
(1) have the form Ag = A 9 + A, cos(k;) + A, cos(k,). The terminology
used forthe symmetry of the gap is as follows: s-wave isotropic for Ag # 0,
A; = Ay = 0, s-wave anisotropic for A, = A, # 0, d-wave for Ay = 0,
Ar = -Ay # 0, and mixed for Ag # 0 # A, # A,. The numerical

calculations are carried out at T = 0 and the parameters V 4 and V| are

always chosen so that T, = 90 K. The results for the same two values of the

chemical potential as for the calculation of the gap are discussed here. The

choice ' = —1.35 is made to reproduce the Fermi surface of YBa,Cu;o;.

w = —2.22is then selected because T is 90 K forthe same values of V; and
W as for w = —1.35. In the former case the gap has a d-wave symmetry
and in the latter one it has s-wave character.

Let us first look at the shift of the phonon lines in Fig. 5. The solid

line is obtained for an isotropic pairing potential Ww = Vo. In contrast

to the BCS model it has no energy cutoff. The form is nevertheless very
similar to the BCS result which can be calculated analytically [**]. The only
difference is that the singularity is now damped due to lifetime effects. The

long dashed curve is obtained foran s-wave anisotropic gap and the last one

(short dashed curve) results from the calculation with a d-wave anisotropic
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gap function. The only feature common to all three curves is that phonons
with the energy below 2A

. (= 35meV) are softened and those with a

higher energy experience a hardening. Otherwise the curves are rather
different. It has already been shown in [**] that the BCS model (and its

extension — solid line) cannot reproduce Raman experiments. The maximal

softening near 2Amax is much too large. In the d-wave case (short-dashed
curve), on the contrary, all phonons below 2Amax show е same small

softening. The anisotropy of the gap completely washes out the singularity.
Finally, the phonon shifts obtained for an anisotropic s-wave gap is an

intermediate situation between the two first ones. From the experimental
point of view among the five Raman active modes observed in YBa,Cu;o;
(at 115, 150, 340, 435, and 500 cm~') фе two lowest in energy show no

measurable renormalization, the 340 cm™' mode is strongly softened and
the two highest phonons harden below T,.. As a consequence, the gap
cannot have a d-wave symmetry because the predicted softening is too

small and all phonons below the 435 cm~' mode should have the same

softening. The result obtained with an s-wave anisotropy instead gives the

right order of magnitude for the softenings.
The changes of linewidths below 7. corresponding to the three

situations studied above are depicted in Fig. 6. Again one feature is
common to all cases. The q = 0 phonon lines broaden and never narrow

below T.. There is one main difference between the s-wave- and the d-

Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave

(dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are

(@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299

with 4’ = —1.35. Amaux = 17.6meV in each case.
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wave-induced broadening. In the former case there is always an energy
threshold below which the phonon line does not change. In the second case

the broadening is finite already for low energy phonons. A comparison with

experiments shows that a gap with a d-wave symmetry cannot reproduce
the results since there is a clear threshold for the existence of a broadening
of phonon lines. In fact there is even a small narrowing for the two lowest

phonons that has tobe attributed to the change of lattice properties upon
lowering the temperature.

4. CONCLUSIONS

Based on the observation oflattice and electronic local inhomogeneities
in cuprate superconductors, we have shown that there are two typical
contributions to the electron—lattice interaction that distinguish these

systems from conventional superconductors. One part is the distortive

coupling inducing static distortions of the near surrounding of doped
holes (short-range) and the other one is the nontotally screened long-
range interaction. The structure of the gap function was calculated in the

frameworkof the BCS theory for the two parts separately. The gapresulting
from the long-range interaction for u' = —1.35 fits well the experimental
determination of anisotropy. This k dependence can be seen to be a

consequence of the structure of the electronic density of states. In a second

step the renormalization of the phonon energy due to the superconducting

Fig. 6. The imaginary part ofŠww at T = 0 corresponding to the three situations of Fig. 5
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state was studied for a gap function with s- and d-wave symmetry. The

numerical calculations show that a gap function with a d-wave symmetry
cannot reproduce the shifts and broadening of the Raman-observed phonon
lines unless one assumes a peculiar k dependence of the electron-lattice

coupling function. On the other hand, a gap with an s-wave symmetry is

able to give a semiquantitative description ofexperiments.
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KEELUPILU ANISOTROOPIA TEKKEPOHJUS JA FOONONITE

UMBERNORMEERUMINE

Andreas BILL, Vladimir HIZNJAKOV, Ernst SIGMUND

On uuritud ülijuhtiva keelupilu anisotroopiat kahe erisuguse auk-

võre-interaktsiooni korral, mis on iseloomulikud kõrgtemperatuursetele
ülijuhtidele. — Esimene neist on moonutav lähimõju seos ja teine on

Coulombi potentsiaali osalisest varjestamisest tingitud kaugmõju. Edasi
on uuritud keelupilu erineva sümmeetria (s-laine, d-laine ...) mõju
foononite q — О iimbernormeerumisele. Tulemusi on võrreldud

Ramani mõõtmistega. On tehtud järeldused keelupilu sümmeetria
kohta ja auk-võre-interaktsiooni tugevuse kohta kõrgtemperatuursetes
ülijuhtmaterjalides.

ПРИЧИНА АНИЗОТРОПИИ ЗАПРЕТНОЙ ЗОНЫ И

ПЕРЕНОРМИРОВКА ФОНОНОВ

Андреас БИЛЛ, Владимир ХИЖНЯКОВ, Эрнст ЗИГМУНД

Изучена анизотропия сверхпроводящей щели для двух видов

элекрон-фононного взаимодействия, существенных для BblCOKO-

температурных сверхпроводников. Первое учитывает близкодейст-

вующее деформационное влияние, второе — дальнодействующее
влияние, обусловленное неполным экранированием кулоновского
потенциала. Исследовано влияние симметрии щели (5-волновой, а-

волновой...) на перенормировку (—0 фононов. Результаты
сравниваются с экспериментальными данными по комбинационному
рассеянию. Приведены выводы, касающиеся симметрии щели и силы

электрон-фононного — взаимодействия B — высокотемпературных

сверхпроводниках.
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