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Abstract. The EPR spectra ofCu(ll) ions in CsMg,_,Cu,Cl; (x = 0.005-0.05) singlc crystals in the

X band and in the temperature range 4.2-300K arc investigated. Three types of spectra arc

observed:

I.LA low-temperature (440 K) tetragonal spectrum (six centres) with g:‘ = 2.320+0.001;

g, =207£001; A, =llBxlo%cm™; A, <llsxlo4cm™;
2. A "quasi-powder" EPR spectrum with the principal axes non collinear to the low-temperature
(LT) axes (40-200 K);,

H H
3. A high-temperature (7>200 K) trigonal spectrum (one centre) with g, =2.147; g, = 2.157;

AH, =10.6 mT, AH, = 13.5 mT. Two theoretical models for calculating the EPR spectra of Cu(1l)
centres in CsMgCl, single crystals are used.

i) Jahn—Teller reorientations are modelled as random jumps between three minima in terms of the

stochastic Liouville equation (SLE) for the spin operatorcomponent paraliel to the direction of the

oscillating magnetic ficld;

ii) Temperature dependence of EPR spectra is interpreted as a change of the tunnel splitting and a

continuous transition from "static" Jahn-Teller effect to the "intcrmediatc” and the "dynamic” one.

The results simulated by both these models are discussed.
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INTRODUCTION

The investigation of the Jahn-Teller effect (JTE) in Cu**ionina quasi-
one-dimensional CsMgCls crystal is a continuation of the investigations of

Jahn-Teller (JT) centres in compounds of different composition and

symmetry. The crystal under consideration is extremely interesting by the

fact that its two neighbouring octahedra ['] have three common anions. In

such structure, JT-active e-type deformations are to change considerably
the type of distortion of the nearest neighbourhood of a paramagnetic ion.
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Cooperative JTE in concentrated CsCuClz magnetic leads to the

displacement of Cu ions from the Cs-axis of the crystal and a strong
monoclinic distortion of the nearest neighbourhood. There has been

obvious interest in investigating the mechanism of this effect, proceeding
from the studying of single JTcentres.

EXPERIMENT

Single crystals of CsMgCl; doped with 0.5-5% Cu®* were grown from

the charge of the corresponding composition of Cs, Mg and Cu dehydrated
halogenides in evacuated quartz ampoules according to the Bridgman
method. EPR spectra were measured at the X band by using an ESR-230

spectrometer having a KPTI flow cryostat and a temperature controller to

vary and record the temperature.
CsMgCl; is of a CsNiCl;-type hexagonal perovskite structure (space

group P63/mmc) whose peculiar feature is a linear chain of face-sharing
octahedra of MgCl¢ along the c-axis [']. The octahedra are slightly
elongated along the Cs-axis and the angle between the bond Mg—Cl and

C; is equal to 53°.

Six axial centres of Cu®* havinš some angular dependences, like static

JT centres, are observed at 4.2 K [°]. The angle between the principal axis

of the {g} tensor ofeach centre and the C3-axis of the host crystal is egual
to 56.5° (Fig. 1). EPR spectra of the centres are described by the axial

spin-Hamiltonian

H= g„BHZSZ +glß(Н,5, + HySy) + А SO, +A;(Sd + 51

with g,= =2320£0001; g =207+001; A, =llBxlo%cm™;
A, < 15x 107 cm”'. The spectrum оё Си?* аг Н || 2, is shown in Fig. 2.

When the temperature increases (range 40-200 K), the hyperfine (hf)
structure lines broaden, split, and their peak-to-peak intensity decreases

essentially. A new quasi-powder spectrum appears, whose principal axes

are notalong those of the low-temperature spectrum and whose orientation

changes with temperature. Within the temperature range of 75-95 K a
transformation of the form of two low-field hf lines has been observed like

in a powder spectrum when the isotropic g tensor changes to axial with

g < &-
Each hf line is split into two lines and the distance between them

is about 3 mT. At T >95 K the second lines are not observable and at

T >l3O K the first ones begin to shift to higher magnetic field without

changing their linewidths. The intensities of these lines are about 100

times less than at T = 4 K. At T = 200 K the common spectrum turns into

one. weak anisotropic line with unresolved hf structure: g:l” = 2.147,

g, =2.157; AH; = 10.6 mT; AH,= 13.5mT and Z || С,.
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DISCUSSION

The result of the joint action of the trigonal distortion of the host lattice
and the tetragonal elongation of Cu octahedron due to JTE is that the {g}
tensor’s principal axes do not coincide with the metal-ligand direction, two

of them being in the plane including C- and Cj-axes of the anion
octahedra. The angle ¢ between g; and C; (¢= 54.7° for undistorted

octahedron) characterizes the relationship between the tetragonal and the

trigonal part of the crystal field. At the temperature increase from 4 K to

Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)

Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
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300 K, the tetragonal (JTE) part is averaged by the relaxation motion
between three minima of the adiabatic potential, and in the limit of fast

(vmo >V, r) motion there remains only one trigonal part. At an

intermediate frequency of motion (v, ~V pr) the appearance of mixed

spectra with various ¢-angles and ап unusualline form are possible.
This section is aiming at a detailed presentation of the theoretical model

we used for calculating the EPR spectra of copper II centres in CsMgCl,
single crystals. Here the JT reorientations are modelled as random jumps
between three orientations of the tetragonally distorted octahedral

complex corresponding to the three equivalent minima of the adiabatic

potential. The behaviour of such system can be described in terms of the

stochastic Liouville equation (SLE) for the spin operator component
parallel to the direction of the oscillating magnetic field 1,

д
55(0 =iL(x®)S

(1),
(D

where x(f) is a stationary Markov process governing the reorientational

motion and

L=£""[H, ] (2)

is the Liouville operator. Using the same path integral technigue as has

been applied to the SLE for the density matrix in [*], we arrive to the

following eguation:

d
.35 (1) = iL,S () + XA,S, (D). (3)

n

Here we can interpret the operators .an (t) as components of the spin
operator F() in every orientation m = x,y,z, each corresponding 10

tetragonal distortion of the octahedral centre. Then the unconditional

ensemble average of the spin operator s (t) is given by

(S (1)) =(13) X5, . @

m

At each orientation m =x, y, z the spin Hamiltonian H,, includes the

Zeeman and the hyperfine term and, hence, it can be written as

H,=B-G,-S+ll-A,,"S, (5)

where G, =fg,, and A, are the spectroscopic and hyperfine splitting
tensor S, respectively. These tensors can substantially differ from one

orientation to another.

The matrix elements A, can be defined by the intensity A of

reorientational jumps as

A for m#n

A, = {—27\. for m = n. (6)
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So far we were neglecting the hyperfine splitting resulting from six

neighbouring chlorine atoms. In our approach this interaction is assumed

to contribute only to the linewidth of each component of the spectrum
while the hyperfine structure remains unresolved. It can be taken into

account by introducing an additional relaxation term,

-Экs (, (7)

n

into Eq. (3), where R,, is the linewidth tensor depending on the

orientation of the external magnetic field. This procedure saves a lot of

computational memory and time, making the problem appropriate for our

computer facilities. On the other hand, there is no reason to expect that a

detailed analysis of those hyperfine interactions would lead to

qualitatively new results.

Far below the saturation regime and in high-temperature approximation
(which require the spin multiplets involved in the EPR absorption to be

equally populated) the EPR spectrum is proportional to the Fourier

transform of the spin autocorrelation function [];

G(t) = Tr[S(S°(s)], (8)

where the ensemble average (S° (1)) was defined in Eg. (4) with the

initial condition S” (0) = S*. Then the spectral line-shape function

I () can be computed from

I(®) = Re(Tr[S(S (0))]), (9)

where (S* (@)) can be derived from Eg. (4) as

(5" (@) = (1/3) XS, (w), (10)

m

with .S“:n () satisfying the system of linear algebraic equations

i(0-L )S. (0) -, (A, ~R S(0) =S. (1)

n

This system, another version of SLE, is solved by using some standard

methods based on tridiagonalization and QL algorithms as applied to a

complex symmetric matrix [°]. In a fast motion regime a simplified
method based on the relaxation matrix approach can also be applied to

solve the line-shape problem .
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EPR spectra, simulated by this procedure, are shown in Fig. 3. The

change of the frequency of reorientation motion between the minima over

a temperature range of 60-120 K is proportional to exp(-AE/kT) with AE

-500 cm”!. One can notice that in general the spectra describe closely the

experimental temperature dependence. Let us note some essential details:

i) the lines of hyperfine structure are only broadening without shifting
in the frequency or in the magnetic field;

i) the centres with higher anisotropy of {g} and {A} tensors are

averaged at higher frequencies among six centres H |l g.. EPR spectra of

three centres in the orientations different from H || Z (H i Z) are averaged
first and those of three others, afterwards;

iif) in principle one cannot obtain any splitting of the hyperfine
structure without adding some new types of centres.

The fact that the averaging takes place over sixcentres in ground vibronic
states with different orientations of Z-axes (frequencies or temperature
dependences of these are slightly different) leads to the emergence of a

quasi-powder spectrum both in the experiment and on modelling. However,
in this case for the closest coincidence of the experiment with the result of

simulation there is a lack of some averaged centres. The coincidence should
be better if along with the centres mentioned at least six (or 12, 18) more

centres will be added with the value of g factor anisotropy smaller than that

for the centres in the ground state. Then the splitting of the lines in the

experiment and some variation of spectra in the intermediate area could be

described easily. This way we come to a conclusion about the need to

introduce additional centres which could be interpreted as complexes in

excited vibronic states with a larger life time compared with the

characteristic time of the EPR experiment, ~1/V,рг

Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps
v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085;f, 1088; g. 10%; A, 10'9; ;, 101
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On the other hand, the introduction of such excited states implies that
the nuclear wave function of the system in this state is more strongly
delocalized than the wave function for the system in the ground state. It

means in turn that the overlapping of such functions of different minima of

the "Mexican hat" increases, i.e. the tunnel splitting or the 3T° value for

this state increases. If the discussion is continued in the same way, one can

see that every state is characterized with its own tunnelling or 3I" value.
Then the following mechanism of temperature dependence of tunnel

splitting is possible. At the temperature increase the excited vibronic
states are averaged by relaxation, which results in the average 3I" value

according to the Boltzmann statistics. From this stand-point the

temperature averaging of the static JTE is the averaging at the cost of

movement and a transition to the dynamic JTE. In our opinion the

separation of these cases is not warranted.

On the other hand, if such model of temperature dependence of tunnel

splitting is true, then it can be confirmed by direct modelling. In our

calculation we followed the method for the intermediate JTE case [6].
Model spectra at various 3I"/A relationships are shown in Fig. 4. It can be

seen that on the whole the coincidence is satisfactory.

Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
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Cu(II) lOONIDE VIBROONINTERAKTSIOONI UURIMINE

CsMgCl; MONOKRISTALLIDES

Aleksandr USATšEV, Juri JABLOKOV, Zbigniew ZIMPEL

On uuritud Cu(II) ioonide EPR-spektreid CsMg;_,Cu,Cl; monokris-
tallides X-ribas ja temperatuuripiirkonnas 4,2-300 K. On vaadeldud kolme

tiilipi spektreid: 1) madalatemperatuurne (440 K) tetragonaalne spekter
(kuus tsentrit); 2) "pulbriline”" EPR-spekter (40-200 K), kus peateljed pole
kollineaarsed peatelgedega madalatemperatuursel juhul; 3) kdrgtempera-
tuurne (7> 200 K) trigonaalne spekter (iiks tsenter).

EPR-spektrite arvutamisel on kasutatud kahte teoreetilist mudelit:

a) Jahni-Telleri iimberorientatsioonid on modelleeritud juhuhiipetena
kolme miinimumi vahel stohhastilise Liouville’i vorrandi jdrgi spinn-
operaatori ostsilleeruva magnetvidlja suunalise komponendi tarvis;
b) EPR-spektrite temperatuurisdltuvust on interpreteeritud tunnelldhene-

mise muutuse kaudu ja pideva iilemineku kaudu staatiliselt Jahni—Telleri

efektilt diinaamilisele.

ИССЛЕДОВАНИЕ ВИБРОННОГО ВЗАИМОДЕЙСТВИЯ
HOHOB Cu(II) B MOHOKPHCTAJLUIAX CsMgCl,

Александр УСАЧЕВ, Юрий ЯБЛОКОВ, Збигнев ЗИМПЕЛ

Исследованы спектры ЭПР ионов Счи(П) в монокристаллах
С$М |.„Сч,СI, в Х-полосе и в температурном интервале 4,2—-300 К.
Наблюдались спектры трех типов:

1) низкотемпературный (4-40 К) тетрагональный спектр (шесть
центров);
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2) “порошковый” спектр ЭПР (40-200 К) с главными осями,

неколлинеарными осям в низкотемпературном случае;
3) высокотемпературный (Т > 200 К) тригональный спектр (один

центр).
При расчете спектров ЭПР использовались две теоретические

модели: а) ян-теллеровские — переориентации — моделировались
случайными прыжками между тремя минимумами в терминах

стохастического уравнения Лиувилля для компоненты спинового

оператора, параллельной направлению осциллирующего магнитного

поля; 6) температурная зависимость спектров ЭПР интерпрети-

ровалась через изменение туннельного расщепления и через
непрерывный переход от статического эффекта Яна-Теллера к

динамическому.
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.
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	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
	Untitled
	Untitled
	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5
	Untitled
	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
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	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
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