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Abstract. In this paper, we consider an EQ®e-type Jahn-Teller system described by а twõ—rhode
Hamiltonian. The Berry phase method enables the calculation of the probabilities of non-adiabatic

transitions. We have calculated the Berry phase for an Ege Jahn-Teller system. The results are two

types of transitions, one modifying ) and the other one leaving j constant.
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1. INTRODUCTION

The EQe Jahn-Teller system represents a model which permits com-

plete calculations and which has been extensively studied ['—3].
The Berry phase method has a wide field ofapplication: coherent states

[°-8] and the Jahn-Teller effect [';?]. The method permits the calculation

of the evolution of states in time.

In this paper the Berry phase method is illustrated applied to an EQe

system.

2. THE E ®< MODEL OF THE JAHN-TELLER EFFECT

Let us consider a Jahn-Teller system of a type E ®e¢, using the Reik

model [°] which consists of a two-level system, the levels being separated
by 1+ 44, with the aid ofa Rabi Hamiltonian representing a bosons system
with two modes: :

1
H = a!a. + alaz + (-2- + 25) о‚ + 2К[(а, + а;)‹ц_ + (а! + аэ)а-], (1)

where a,—T
‚ a; represents the creation — annihilation operatorsof the :th mode.

This model corresponds to a Schwinger representation [? '°]. The operators
obey the commutation relations:
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о ь)= вые]) =l,

| (2)

-
[вь а) =[ а) =[аа)= [во а) = ,

and for the Pauli matrices:

_[o’+,o’_] = о,,

— [02,04] = 04, (3)

- | j ›[o':‚o'_]='_o_ .

The eigenstates of this Hamiltonian can be expressed by using the eigen-
states | I>, | 1> for the o, operator. Denoting the vacuum state for a two-

boson system by |OO >, we can write the eigenstates for (1) as

i+ s>= а'Ф(а)
‚ оOO> |l>+адаа) 0> |l> . (4)

The Hamiltonian can be expressed as a function of the momentum op-
erator J and the operatorA, defined as

J = alal — alaz + %o',‚
hy = alas + 60, + K[(al +а!о+ + (а! + а).

Hamiltonian (1) can be expressed as follows:

H = J + 1 + 2h+.

Theeigcnvalues for the Hamiltonian are

.3
л = ; + > + 2, (5)

where € represents the eigenvalues for A,: |

h|'+—l->—c|'+l>° (6)+IJ
2

= €}]
2

,

e can be expressed as a function of Judd’s parameter v:

Y 3_
€=3s-5"3 k“.

The rising and lowering operators for the |j + % > state are the Л+ ор-
erators defined as



207

Jy = Л, аЛ,. (7)

The action of the operator J is:

J"+l>—('+l)‚'+l> (8j+z HZ )

The operators a;, a‚-t can be expressed in the variables &, 7:

- I,
-

®
а C, a) =

ÕC, a, =l, a=
Õn

(9)

In these variables:
д д 1

И = Ё — -+-,Ед{ "an +2°

hy = —д—+ба +& —Q-+ о+ + К Ё+Е T (10)+ — nõn z

дб
r’ +

дТ‚
—›

21 , .

/+5 >= ' (2)] 1> 100 > +7*" f(z)| > [OO >,

where z = £7.
It results in the eigenvalue equations for ®, f expressed in z:

d® v j 1
5 df .

— (2—2—2—õ—k)<b+k[zdz+(J+l+z)f] =O,

d® df v j 1к|( ®® = -(3-1-5+5-#)s| =0[(dz) +Ф(г)] + [zdz (2 25 +5-k f] 0

The Rabi Hamiltonian can be obtained from a particular condition of a

single mode:

fat 24 (4 tH=a a+ž+ ž+26 о, + Vk(al + a)(0+ +o_).

3. THE BERRY PHASE

We consider a Hamiltonian H(«) which depends оп а parameter o ОЁ

a space D. We assume that we know the states of this system, (|n(«) >),
which depend on the parameter a. These states satisfy [']:

H(a)|n(a) >= E(a)|n(a) >. (11)

The parameter a can be of a vector form.
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If the system has a temporal evolution from the moment ¢, to ¢ along a

smooth path a(t), we can write:

; t

(t) >= |n(a(t)) > exp [—ž / E‚.(a(t’))dt’] .

to

In the adiabatic approximation we have M

0
< n(a(t))läln(a(t)) >= 0. (12)

For a non-adiabatic transition between the initial state |n; > and the

final state |n; > there exists a relation

; Inf >= ei'y"(C)ln; >. (13)

It can be seen that the two states are linked by a phase factor v,(C),
called the Berry phase.

This phase factor corresponds to the transport of the state |n > along
the curve C, the factor being defined as

'7„(C)=—'fc<n|dn>. (14)

One can also define a generalized vectorpotential:

A =< nalValna >, (15)

where V. represents a gradient-type potential, defined in the space of the

parameter &. As a result

C) = fc Ädõ. (16)

If this factor is non-zero, then between the initial and final states there

exists relation (13) and the transition is possible.
For the parameter ä of the dimension n

n д ;
Yn(C) = —lme < n(a,—)l—M > da; . (17)

I=l aai

4. THE BERRY PHASE FOR THE E ®¢ SYSTEM

The generators which leave the eigenstates of E @®e unchanged are o,

and the operators

1
J = a!al — a;[ag + žaz,

N 2 = a;[ а2
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or a?al
,
a;[az, and 0,.

We will define the operators as follows:

Ti = exp[—?ao.],

T» = exp[-ioa]al], (18)

zı exp[—ißa;[az]
.

After the application of these operators the Hamiltonian is

Н, = T‚]t HT, = Hy + 2k[(a) + a;[)T‚ta_‚_T. + (a 2 + a:[)'l'lta—'l'l],
where

T T !
Ho= ajay+azaz+l+ ž+6)az.

It can be verified that

expliao;]oy exp[—iao,] = o, explia],

expliao,]o_ exp[—iao,] = o_ exp[—iq].
As a result the Hamiltonian is as follows:

И, = Но + 2К[(а, + а;[ )o+explia] + (a 2 + a:[)a„ exp[—žza]] .

It can be seen that

exp[iöa;[al]al exp[—iOalal] = a exp[—lo),

exp[iOa}ta,]a}t exp[—iüa:[al] = a? exp[:o],

exp[i,ßalaz]az exp[—ißalaz] = a» exp[—2f],

explifialazlal exp|—ifalas] = af explif].

Applying successively the transformations 75 and 75 to the Hamiltonian

11,, we obtain:

Hy = T H\Ty = Ho + 2k[(ay exp[—io] + ) )oy explia]+

+(a! explio] + az)o_ exp[—ia]),

[[3 = Тзт ['[2T3 = Но + 2k[(a| CXp[—iÜ] + al exp[iß])a+ exp[m]+
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+(a:[ exp[?o] + a» exp[—-i8])o- exp[—2a]]. (19)

As a result, the Berry phase can be calculated from the interaction term

of the transformed Hamiltonian:

„,
1 2 1 .

¥(C) = 2k}4olm < 7 + z1a10415 + 5
> expli(a — 9)] +

o, 0t 081008
. s 1 f jel .

+ < 7+sа2o+|7+s > expli(a+B)] < j+7l|aio-lj+s > expli(—a+d)]+

„,

1 , 1 .
+<7 + 5la2o-|j +5 >ехр (—а — B)]] ds. (20)

)

S. CONCLUSION

By taking the domain contour (and the parameter’s domain) inan ade-

quate way, we obtain for the Berry phase non-zero integrals with the terms

varying the total quantum number (corresponding to aTa+ and ao_) and

the terms which do not affect j (corresponding to ao апа ата_).
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(Е ®€)-SUSTEEMI BERRY FAAS

Gheorghe E. DRAGANESCU, Nicolac M. AVRAM

On vaadeldud (E ®e)-tiilipi Jahni-Telleri siisteemi, mida kirjeldab ka-

hemoodiline hamiltoniaan. Berry faasi meetod v6imaldab arvutada mit-

teadiabaatiliste siirete tdenédosusi. Toos on arvutatud Berry faas nimetatud

siisteemi jaoks. Tulemuseks on kahte liiki siirded, millest iikks muudab kvan-

tarvu 3 ja teine jdtab selle konstantseks.
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ФАЗА БЕРРИ ДЛЯ (Е ® €)-CHCTEMbI

Георге Е. ДРАГАНЕСКУ, Николаэ М. АВРАМ

В работе рассматривается ян-теллеровская система типа Е ® €,

описываемая двухмодовым гамильтонианом. Метод фазы Берри
позволяет вычислить вероятности неадиабатических переходов; в

работе вычислена фаза Берри для рассматриваемой системы.

Результатом являются переходы двух типов, один из них меняет

квантовое число /, другой оставляет } пПостоянным.
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	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
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	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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