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Abstract. A 2nd quantized version of the Lee-Low-Pines transformation (LLPT) is presented in a
one-band Wannier base which offers itself to multiparticle applications. It is first applicd to a trans-
lationally invariant coupled electron—phonon system. Later it is generalized to arbitrary Abclian
Hamiltonians. In the one-electron case the transformation achicves diagonalization of the respec-
tive Hamiltonians with regard to the electronic subspace. This is even achicved in the case when
the electron—phonon interaction is nonlincar. Also, in a multiparticle case the LLPT can be fully
performed. An illustrative example is given. For future application it may further be noted that the
multiparticle LLPT establishes effective electron—electron interaction terms of non-Frohlich type,
which may also have an impact onto superconductivity.
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1. TRANSLATIONALLY INVARIANT (CYCLIC) SYSTEMS

We introduce a unitary multiparticle operator which in a one-particle
case reduces to the LLP operator [']. We limit the electronic Hilbert space
to a one-band Wannier base c! |vac) = |m). Then our multiparticle LLP
operator reads:

Upe = exp[ Z me! em Z qbfb,, (1)

m=1

In a one-particle case Expr. (1) may be written as

N
l/LLP e Z CI"Cm(Ih((?))m ) (Cmcn e 0) ) (2)

m=1|

where we have introduced the translation operators

R, =R, R =R(Q) R, Ricw=cmsilty,
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Ri(Q)Q, = ¢F1Q,Ri(Q) . (3)

The electron—phonon model is represented by the Hamiltonian

1 N N
H=Hp+W, Hy = g Z'(P,;‘P.,+Q§QIYQ.,), W 5 . ¢! caAmn(Q) .
= m,n=
(4)
Thus the transformed Hamiltonian reads
N N
Tup: H= Ul pHUup = Hpp + Y. 3l cmir An(Q) R} (Q)+
m=lr=l
+multiparticle terms. (5)

In order to complete the diagonalization of electronic one-particle terms we
introduce the Bloch-transformed electron operators ¢, by

N 2
WY i exp[—zzmk] Ck - (6)
k=1 N
By means of (6) the transformed Hamiltonian reads
ad t o pIYy F
Tiis P8 = M €Y oy zexp[Tkr] An(Q)R(Q)+
k=1 r=1i

+multiparticle terms, (7)

which is diagonal in the electronic subspace.

2. GENERAL ABELIAN SYSTEMS

Due to a lemma given in the book of Lomont [?], each Abelian group
may be divided into a product of cyclic subgroups. Therefore Expr. (1)
may be written as a product of unitary operators, each of them referring to
a single cyclic subspace. The multiparticle LLP operator thus reads

A
ULLP - H U/\a
A=]
N| NA Nl
Ur=exp[ =20 3 o 3 oy malmema 00 (B)
my=1 ma=] qi1=1

%: mayy ]
N,\ Qlyeeey gA dlie9A

ga=1

We note that the single set of the indices {m } is now transmuted into a mul-
tipleset {m, }, ..., {ma} if there are A cyclic subgroups. The same holds for
the phonon indices {q}.
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3. EXAMPLE: N-SITE-FROHLICH PROBLEM WITH
SPINFLIPS

As an example we treat an extended 2nd quantized form of the Frohlich
Hamiltonian [*] by adding spin coordinates to the electronic operators (see
also [*]). Therefore the system is no longer mono-cyclic but still Abelian:

N N-1
IIp_ZhQ(q b+ X Y Y [T, empdo +he]+

m=1 d=0 o=1,}

N N-I
s s e S Rpe [Ts(j) ey h-C.]+

m=1 d=0 p#o=1,]

z”:i"z 5> (D9 exp [ 25X qm] (b, + 8 )l maa + b (9

o=t
We allow spmﬂlp dynamics in the transfer terms and introduce the spinflip
transfer energy T of ) which is usually much smaller than the transfer energy

T without spinflips. Since the phonon modes are independent of the spin,
Expr. (8) in this particular case assumes the form

Uwe = cxp[ - —2171 Z Z mcm T qufb ] (10)
m=lo=%.1

The transformed fundamental operators of the problem are given by

22"”' i t
TLLP :Cm,o = Cm,o * EXP [ . Tm Z kbkbk] )
k=1

2w
TLLP o bk = bk - eXp [ o ka] &

Again we introduce the Bloch-transformed electronic operators ¢y, :

= (2N)"/2 Z Z exp[—mk] exp [z’;rap,,] Shns s (12)

k=1 po=1

where in the exponent on the right-hand side o is represented by integers
1,2, such that o = 1=spint and o = 2 = spin |, (¢ = 3=0 = 1).

In the transformed picture the two spin indices are denoted by p, = *1,
which alludes to the physical meaning of a "spin-parity". We find the trans-
formed Hamiltonian

N
TLLp s IIF = Zhﬂ(q)b!,bq—}-

q=1
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: 2z7r
Z [T(d) exp [ ( Z qbfb )]ck selhe + he. ]+

2 2z7r ad
3 [T(d) exp[ ( qu*b )] ‘"””cz‘pcck,pc+

g=1

N N. 2 2% N
the] + 30 330 3 [ exp [Srd(k — 3 ablb) | x
q=1

b
]
au
1]
(=]
b
Q
]

L
1l
(=]
Y
1l
ol
1l
=
q
1l

(b + bt )Ck poCkwo T+ h.C. ] + multiparticle terms, (13)

which indeed is of a diagonal form in one-electron terms.

it = e e
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4. RESULTS AND CONCLUSIONS

e A 2nd quantized LLP-type unitary operator in the exponential form
is introduced.

e Itachieves diagonalization of one-electron terms in Abelian electron-
phonon systems; this is true even for nonlinear electron-phonon cou-

pling.

e As an illustrative example its application to a generalized Frohlich
Hamiltonian with spinflips is given, including the transformed fun-
damental operators.

e Its applications to multiparticle systems are possible due to its expo-
nential form. The concrete calculation of multiparticle terms for the
presented example as well as for other systems is straightforward and
supposed to be examined in future works.
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LEE-LOW’-PINESI TEISENDUSE WANNIER’
FORMULATSIOON

Matthias RAPP, Max WAGNER

On esitatud Lee-Low’—Pinesi teisenduse sekundaarkvantimise versioon
iihetsoonilisel Wannier’ baasil ja vaadeldud selle mitmeosakeselisi raken-
dusi. Esmalt on teisendust rakendatud translatsioonivariantsele elektron—
foonon-seosega siisteemile. Seejirel on seda iildistatud meelevaldsete
Abeli hamiltoniaanide tarvis. Uheelektronilisel juhul diagonaliseerib see
teisendus vastava hamiltoniaani elektronide alamruumis. See on voimalik
isegi mittelineaarse elektron—foonon-interaktsioonikorral. Ka mitmeosake-
selisel juhul on vaadeldav teisendus tdielikult teostatav. Sel puhul méirab
teisendus efektiivsed elektron—elektron-interaktsiooni litkmed, mis vdivad
olla rakendatavad iilijuhtivuses.

®OPMYJIMPOBKA BAHBE-TIPEOBPA30BAHUA JIU-JIOY-TIAMHCA
Maruac PAIIIl, Makc BAI'HEP

[IpencrasneHa BTOPUYHO-KBAHTOBaHHas Bepcus npeobpasosanus JIkn—
Jloy-Tlaitnca (IUJIIT) Ha onHo30HHOM 6a3uce BaHbe M paccMOTpeHBI ee
MHOIOYaCTHYHbIE TPUMEHEHHS. CHayana OHa TMpHUMEHEHa JUId
TPAHCIISLMOHHO-MHBAPHAHTHOI CHCTEMBI C 3JIEKTPOH-(OHOHHOM CBA3bIO,
3areM 00oOuIeHa Ui TPOM3BONIBHBIX abeneBbiX raMWIbTOHHaHOB. B
OIHORJIEKTPOHHOM  Cllydae 3TO  MNpeoOpa3oBaHME  JMaroHaIM3yeT
COOTBETCTBYIOIIMII TaMWJIBTOHHAH B 3JIEKTPOHHOM MOANPOCTPAHCTBE.
DTO  BO3MOXHO Jaxe TMpUd  HEIMHEHHOM  3JIEKTPOH-(OHOHHOM
B3aumozeicTBuu. B MHoroyactuynoM ciyvae ITJIJIIT Ttakxe momHOCTBIO
ocymectBuMo. Mmuorovyactuynoe ILULIII onpepenser addekTuBHBIE
WICHBl  JIEKTPOH-3JIEKTPOHHOIO  B3aMMOJEHCTBHS, KOTOpBIE  MOTYT
MCIIOJIb30BaThCA B TEOPHU CBEPXITPOBOAMMOCTH.
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	Fig. 1. The structure of a KDP crystal.
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	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
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	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
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	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
	Untitled
	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
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	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
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	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
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