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Abstract. An approach to H-bonded molecular crystals, such as KDP, etc. is presented, which is

based on the vibronic theory of ligand substitution effects. Any redistribution of protons over their

potential energy minima is treated as a substitution Og_43#Ogq_y in the molecular building units of a

crystal. The pseudospin formalism is applied for the description of proton distributions. The Ising
form of the total energy of the crystal is obtained. The Ising model parameters are expressed in

terms of the MOs of the molecularbuilding units of the crystal and can be estimated from quantum-
chemical calculations. This approach allows one to give reasonable estimations of the Ising
parameters and ю explain the main chemical trends in ferroclectric properties for the KDP-family
materials. Its application to the squaric acid is also discussed.
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The ferroelectric properties of H-bonded materials, such as KDP

(KH,POy), H,SQ (H,C404), etc. have been thoroughly studied [l' 2]. As

to the theoretical models used for their microscopic description, they
cannot be regarded as fully satisfactory, mainly due to the presence of

some fitting parameters [2]. Therefore, it is purposeful to develop other

approaches where the major parameters of the theory can be evaluated in

terms of the composition and the electronic structure of the material under

study. In this connection the vibronic theory of structural phase transitions

[3’ 4] and its application to H-bonded crystals [s‘B] should be mentioned.

In the latter, the origin of order—disorder phase transitions in KDP-like

crystals is assumed to involve the pseudo-Jahn-Teller effect for their

tetrahedral building units. Here a different approach to H-bonded materials

is discussed, which is based on the vibronic theory of heteroligand

syster{los [9] and the results of quantum-chemical calculations (see
also ['VD.
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The effects of the ligand substitution ML, —ML__,XY...Z are

treated in this theory, and the perturbational treatment is applied for
determination of the adiabatic potential for the heteroligand system
ML, _XY...Z. The adiabatic potential of the homoligand system ML, is

regarded as a zero approximation and the perturbation operator has a form:

I =He+V, V=X (ö.‘](‘/öQV)OQv +
... (1)

Неге У is the vibronic coupling operator for ML, and (g is the
“substitution operator” describing the ligand replacement effect on the
electronic subsystem of ML, in its equilibrium molecular geometry.

The case of closed electronic shells of ML, and ML, XY...Z is
considered. Then for the lowest sheet of the adiabatic potential of

ML,_XY...Z we have

'
_

2
E (Q) =l/2%X K 0O +

2 v

+SO —2 Zm;tn (Snm/mnm) -4 2:m;utnzv (SnmAnm/mnm) Qv' (2)

In Eq. (2), E{(Q) is the total energy of ML, XY...Z as a function of the

normal (symmetry) coordinates Qv of ML, апа К
v
and A: are the force

and orbital linear vibronic constants of ML, respectively.m'l"he ®, are

the energy gaps between the occupied (Y,) and the unoccupied (тч!т)
MOs of ML,,, and 5,,,, denotes the matrix elements of the one-electron

substitution operator Hg in this MOs basis set. Therefore onehas

V

Anm =V, OHI0)). S, = W[H{w,) ©

where His the one-electron Hamiltonian of ML, and y , W, are its

eigenfunctions. It is easy to obtain the difference between the total

energies of ML, XY...Z and ML, in their equilibrium configurations o
and Q" =O, respectively. Using the conditions JE

1
2) /dQ, = 0, one

has fromEq. (2)

E (@) -E(0)=

=5, 2% .S /o -4 K E .S Aуе ). @
20 тлт— nm VV Eam nm пт’

`

The analysis of the H-bonded molecular crystals under study is based on

Eg. (4). Let us consider, for instance, the KDP-family crystals (Fig. 1).
The AOa tetrahedra (A = P, As) in their lattices are bounded via H-bonds.

Each oxygen atom of any tetrahedron exists in one of the two states

because the proton’s potential curve has two eguivalent minima: these

states are Op_py and Ogp. Any proton redistribution over their

equilibrium sites on H-bonds can be treated as an Оо_н**Оо..н
replacement in the apices of these AQ, tetrahedra. This “substitution” has

a cooperative character because the Og_yg#oOqpy transformation in a
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given apex of any tetrahedron results in reverse transformation in the

neighbouring tetrahedron:

^ /al /
/А—О——Н. . .O—A\ /A—O. .

.H—o— A\

For the protons on the H-bonds of a crystal it is useful to apply
pseudospin formalism. In this formalism two values 6. = t 1 of the

pseudospin 6. correspond 10 two equilibrium proton posi{ions on the jth
H-bond. Therfone can obtain the Ising form of the total energy expression
of a crystal, i.e.

E = C-1/2 ziaejjijoioj’ (5)

By using Eg. (4) the Ising model parameters J;; from Eg. (5) can be

expressed interms of the electronic structure of the material.

Letus consider the AO4 tetrahedron MOs in the basis of the valence ns,

np(A) AOs and 6 AOs of oxygen atoms (Fig. 2). The MO scheme is

shown for the hypothetical proton positions at the H-bond centres (this
scheme takes into account the realistic S 4 symmetry of the AO4(H)4
moiety in the crystal rather than the T 4 one. The b—e splitting is assumed to

be small as compared with the gap (2A) between the highest occupied b, e

MOs (HOMO) and the lowest unoccupied a* MO (LUMO).

Fig. 1. The structure of a KDP crystal.
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The proton transfers from the hypothetical positions to the actual ones

change the orbital energies (@) of the 6 (O) AOs participating in the

А-О bonds. These changes are +Ao depending on the oxygen final state:

Оо__н or Ogy- In such way each distribution of pseudospins determines

the o (O) orbital energies of all AO4 tetrahedra, i.e. the (diagonal)
substitution operator matrix in the AOs basis set of these tetrahedra.

For simplicity the frontier MOs (b, e, a*) approximation is used to

evaluate E,(Qf) for each AO, tetrahedron from Eq. (4). Thus the total

energy of the crystal is the sum of these quantities over all crystal
tetrahedra. Here the “cooperative” coupling of the Og__y/Ogy states

should be taken into account for the neighbouring tetrahedra. Then the

sum of the Sy terms vanishes, while the sum of the other terms has the

Ising form (Eq. (5)), and the Ising parameters are

22,2
J, =c l/A0"/8A, X

2 2 2 ,

x {l+ (A/KA)- 2(А|/А)) - 2 (А) А /КА)}, (6’)

Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO,
tetrahedron (b).
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J = СРАоС ВА{1 + (AT/K ;A)] (6”)

with

Aa = A26P/c = A260/D (7)

Неге J, and J
|

are two nonequivalent Ising parameters corresponding
to the neighbouring pseudospins situated in the same (Jy) and in the

neighbouring (J,) xy planes. The 24, , 2A, are the e-a* and b-a* gaps,

respectively; ca, [, are the coefficients in the MOs of an ideal AO,
tetrahedron with Ty symmetry, and 26P, 26P, are the differences

between С(О) АО electron populations, which correspond to the charge
transfer in the xy plane and along z direction, respectively. (The AO4 unit

has two lateral oxygen atoms in the Og4 states ап{ two other oxygens in

the Og_y states for the first case, and it has two “upper” oxygens in one

of the states and two “lower” oxygens in the other states for the second

case). A", A
1 Ko’ K

1
denote the orbital vibronic and force constants for

the A atom displacements in the xy plane and along z-axis, respectively.
The expressions for the total energy per formula unit for the

ferroelectric (Ef) and antiferroelectric (E,) phases of the KDP-like crystal
(omitting the long-range electrostatic interactions) can be written as

Ef= —-2J,-¢4/2, E =-2J +¢g,/2. (8)

Неге g,=4J +4J, (lEOI is about O,IJ, in accordance with

quantum-chemical calculations; see below).

Eguations (6—B) permit us to give a qualitative explanation for some of

the main trends in the behaviour of KDP-like materials. It is well known

that the Ry <R,[ and Ry >R,[ inequalities are valid for

the H- and D-bonds. Непсе ме have OP (D) >dP(H) апа

J, (D) >J| (H). Thus, IEfl and lEal increase for a deuterated material,

which isin agreement with experimental data that show the increasing of

T, for both deuterated ferroelectrics and antiferroelectrics (I], we are

also able to explain the effect of the P — As replacement. The energy

gaps in molecules and crystals usually become narrower when the atomic

numbers of the constituent atoms increase. The quantum-chemical
calculations of different AO4-containing clusters (A = P, As), in particular,

H4AO;L , reproduce this trend. The decreasing of the HOMzO—LUMO gap

leads to the increasing of the quantities A,/A, A/KA, and

(Alzl/K"A") : (Azl/K .LA J_) .

As a result, the value of leol increases (80 is
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negative). Therefore, the P— As replacement stabilizes E, and

destabilizes E Hence it decreases T, for ferroelectrics and increases T, for

antiferroelectrics, which is in agreement with experimental data for KDP-

family materials [" ! l].
Various quantum-chemical calculations were carried out for a

quantitative estimation of the J, and J, values. In particular, a

semiempirical MNDO/H procedure specially adapted for H-bonded

systems was applied. For simplicity, the terms containing vibronic

constants were omitted from Egs. (6), because their contributions are small

when the gap 2A is wide. The calculated values are 2A =l2¢eV,

20P, =O. 1;76,226Р
,

= 0.168. Taking into account the obvious ineguality
1/2 & 2cal‚ $ 1, these calculated data lead ю the following

estimations of the аег parameters w and €W = 2J,+4J =

880 — 1760 K and |gg| = |4J, +4J,| = 160320 K. These estimates

are in reasonable agreement with the experimental ones obtained by using
the thermodynamical data of KDP and DKDP (w=Boo- 1100 K and

€, = 80— 115 K, ['* ]). It should be noted that similar estimates seem

tobe valid for KDA and DKDA, because of the similarity of the electronic

structures of KDP-like crystals.

Apparently, the approach described above can also be applied to other

materials containing H-bonded polyhedra A0,,. Besides, it can as well be

applied to some different systems such as squaric acid (H,SQ). The latter

is a layered molecular crystal (Fig. 3), which is usually referred to as a

two-dimensional analogue of KDP. We shall consider the “Cy4-core” of the

H,SQ molecule as a pseudoatom surrounded by four O(H) ligands. The

valence orbitals of this pseudoatom are the 6 and п МОS оё Ше Сд-соге
containing ¢ (C) and ® (C) AOs which participate in the C—O bonds. It

is easy to obtain the expression for the total energy of the H,SQ ауег п а

form of Eq.(s). As earlier, we omit the vibronic contributions for

simplicity. Then, for the independent Ising parameters we have

222 2 2 2
J;o= Сая!bgAa e SAbga;

- caucbuAau/BAa: b: ,

J=]. + P AŽ/d +D A/D 2+
tr cis ae, б

e,a e, bg с

bgeu

2 2 2
+ caucegAan/ 4Aa:е:’.

(9)
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Here J;; and J,, refer to a pseudospin coupling in the cis and trans

positions of the C404-fragment, respectively; С/p »
etc. are the

coefficients in the MOs of the C404-fragment, and 2A
b o ,g etc. are the gaps

between these MOs. Ax
g

and Aa
„

аге the variatiänsgof the 6 (O) and

* (О) AOs energies depending upon the state of the oxygen ают (Оо_н

ог Од..н). Опе сап ехргеss АЛа 1п terms of the electronic populations of

the 6 (O) and 7 (O) AOs (on the analogy of Eg. (7)).

In conclusion, let us point out the physical meaning of Egs. (6) and (9).
These were obtained from Eq. (4) and they correspond to the change of the

internal energy of the H-bonded molecular units of a crystal due to proton
rearrangement on their H-bonds. Thus, a mechanism of the indirect

pseudospin interaction in the crystal can be proposed, which is connected

with the electronic and the geometrical reorganization of the non-hydrogen
framework of a crystal. The numerical estimations for the Ising parameters
of KDP-like crystals mentioned above evidence that such molecular

mechanism is important and may be predominant.
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Fig. 3. The layer structure in the H,SQ crystal (low-temperaturephase)
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HETEROLIGANDILISTE SÜSTEEMIDE VIBROONTEOORIA

RAKENDAMINE STRUKTUURSETELE FAASISIIRETELE

MONEDES VESINIKSIDEMEGA MATERJALIDES

Aleksandr LEVIN, Sergei DOLIN

On esitatud KDP-tiilipi vesiniksidemega molekulaarkristallide kasitlus,
mis pohineb ligandide asendusefektide vibroonteoorial. Prootonite

iimberjaotumist potentsiaalenergia miinimumide vahel on vaadeldud

asendusena Og_ O_p kristalli molekulaarsetes struktuuriiiksustes.

Prootonite jaotuse kirjeldamiseks on rakendatud pseudospinni formalismi.

Kristalli koguenergia on antud Isingi kujus, kus Isingi parameetrid
avalduvad kristalli struktuuriiiksuste molekuliorbitaalide termineis ja on

hinnatavad kvantmehaaniliste arvutuste abil. See kisitlus voimaldab anda

Isingi parameetritele moistlikud hinnangviirtused ja selgitada KDP-tiiiipi
materjalide senjettelektriliste omaduste pohilisi “keemilisi” tendentse.

ВИБРОННАЯ ТЕОРИЯ ГЕТЕРОЛИГАНДНЫХ СИСТЕМ В

ПРИМЕНЕНИИ К СТРУКТУРНЫМ ФАЗОВЫМ ПЕРЕХОДАМ

В НЕКОТОРЫХ Н-СВЯЗАННЫХ МАТЕРИАЛАХ

Александр ЛЕВИН, Сергей ДОЛИН

Предложен подход к Н-связанным молекулярным кристаллам
типа КОР и т. п. на основе вибронной теории эффектов замещения
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лигандов. Любое перераспределение протонов по минимумам их

потенциальной — энергии — рассматривается как замещение

Оо_н*'Оо.н в молекулярных структурных единицах кристалла.
Для описания распределения протонов применен псевдоспиновый

формализм. Полная энергия кристалла получена в форме Изинга, где

параметры Изинга выражаются в терминах МО молекулярных

структурных единиц кристалла и могут быть оценены —из
квантовохимических расчетов. Этот подход позволил получить

разумные оценки параметров Изинга и объяснить OCHOBHBIE

"химические" тенденции B сёгнетоэлектрических — свойствах

материалов семейства KDP. Обсуждено также — применение

предложенного подхода к квадратной кислоте.
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	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.

	ORIGIN OF GAP ANISOTROPY AND PHONON RENORMALIZATION
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5

	TWO-BAND ELECTRON-PHONON INTERACTION IN FULLERENE IN THE BOND-CHARGE MODEL
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л

	DYNAMICS OF PHASE SEPARATION IN La2CuO4+, PROBED BY MAGNETIC SUSCEPTIBILITY EXPERIMENTS
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.

	MAGNETIC EXCITATIONS IN LOW-DOPED CuO2 LAYERS
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.

	POLARONS IN THE TWO-DIMENSIONAL HOLSTEIN-t-J MODEL
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.

	DIFFERENCES BETWEEN ONE- AND MULTIBAND HUBBARD MODELS
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).

	RENORMALIZATION OF ELEMENTARY EXCITATIONS OF THE t-J MODEL WITH DOPING
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.

	EFFECTS OF VIBRONIC COUPLING IN LOW-DIMENSIONAL SYSTEMS
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.

	ТНЕ Н h2 JAHN-TELLER EFFECT IN ICOSAHEDRAL SYMMETRY
	MULTIMODE JAHN-TELLER EFFECTS IN STRONGLY-COUPLED VIBRONIC SYSTEMS
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
	Fig. 2. Energies as in Fig. 1 but with n =0.6.
	Fig. 3. Energies as in Fig. 1 but with n =0.9.
	Fig. 4. Energies asin Fig. 1 but with n = 0.6, o =0 and o, = 0.8 о.

	HAWKING PROCESS IN A VIBRONIC SYSTEM: RELAXATION OF STRONG VIBRATION
	QUANTUM EMISSION CAUSED BY OPTICAL NUTATION
	ON A CLASS OF SQUEEZED EXCITED STATES IN EXCITON-PHONON AND JAHN-TELLER SYSTEMS (’EXOTIC STATES’)
	Fig. 1. Eigenfunctions of FG equation (5) for p=-1, D= 15, T=so. All functions below n = 54 display an odd number of nodes, whereas the eigenfunctions n = 54 and n = 57 display an cven number of nodes. For p = +1 the situation is reversed.
	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
	Fig. 4. Adiabatic potentials Vfd (@) and v:" (Q) (see Eg. (22)) for fixed transfer T= 50 апа фе coupling constants D = 0 (long dashes), D = 10 (short dashes), D = 20 (solid line). For finite D the upper adiabatic potential approximately corresponds to a squeezed parabola and its squeezed eigenstates are connected with nonconventional states.
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	Fig. 1. The structure of a KDP crystal.
	Fig. 2. The oxygen 6 AOs participating in the A-O bonds (a) and 6 MOs scheme for the AO, tetrahedron (b).
	Fig. 3. The layer structure in the H,SQ crystal (low-temperature phase)
	Fig. 1. Shift of layers such that h stacking is converted into hc stacking. This shift belongs to a wave at the A point (q = 0,0,7/c) with respect to the h lattice.
	Fig. 2. The cooperative Jahn-Teller ordering in CsCußr3. Also the superexchange path of -Cu(b)- Cu(4)-Cl(a)-Cu(3)-C1(b)-Cu(1)-Cl(a)-Cu(2)- with successively acute and almost straight angles is shown.
	Fig. 1. The parent hexagonal perovskite lattice.
	Fig. 2. The exchange spectrum of the CsMg,_,Cu,Cl3 crystal for T=4.2 K, Vl =9.3 GHz. The orientation of B is close to Cs.
	Fig. 3. The low-field (a) and high-field (b) parts of the exchange spectrum of the CsMg,_,Cu,Cl, crystal for T=42K, v, = 37.2 GHz. The orientation of Bis arbitrary.
	Fig. 4. Projections of two face-sharing octahedra (common face is shown by a broken line) on the ab plane. All possible variants of the orientations of long axes in two octahedra are shown. When going from the first octahedron to the second one, the orientation of the long bond is rotated by 60° clockwise (a) and anti-clockwise (b).
	Fig. 1. Dependences of the extremum energies of the adiabatic potential for a defect with one trapped electron in the initial t, state оп the yammcte f nonlinear elastic forces = k /40b", n = 05. 1, W; 2, W; 3, Wš„'p .4, wäz„)o.
	Fig. 2. The same as in Fig. 1, for two electrons in the initial t, state. The vertical line corresponds to t=o.3.
	Fig. 3. The same as in Figs. 1 and 2, for three electrons in the initial t, state
	Absorption spectrum, T=lOK. SrF,:Ag*, plate of 2,2 mm thickness. Spectral decomposition into elementary gaussian bands (---- experimental, — fitted spectrum). Insert: absorption spectrum of a SrF,:Ag* plate (3.2 mm) at T =3OO, 90 K.
	Fig. 1. Spectra of photoluminescence related to Ga vacancy-donor complexes in GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). T=2 K.
	Fig. 2. Spectral dependences of the polarization ratio in the 1.18 eV-band of photoluminescence under uniaxial pressure for GaAs:Te (/), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). Т= 2 К. a, Pl [loo] ;5, Pl [lll] .P: la, 2a, 3a, 4a, 4b -8 kbar; Ib, 2b, 3b — 10 kbar.
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	Fig. 3. Dependences of the polarization ratio at iw = 1.18 eV on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3) and GaAs:Si (4). a,c, P Il [loo] ; 6.4, Pl [lll] . T(K): a, b, 2; с, а, 77.
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	Fig. 4. Calculated dependences of the integrated polarization ratio on the applied pressure for VGaDas (@, b) and Vg,Dg, (. d). а, с, Р || B[loo] ‚Б а, Р|| [lll] . Т(К): / -6, 2 – 77. Values of parameters: deformation potential constants: B = —O.B ¢V, D = —2 eV; spin-orbit splitting: 150 meV; splitting of initial p state due to fixed distortion: -38 meV for Vg,Das, —23 meV for VGaDga; splitting of initial p state due to reorienting distortion: 150 meV.
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	Fig. 5. Characteristic orientations of a Vg,Dg, complex under the external pressure, directed along the [lll] axis (a, &) and the calculated changes in the energies (E) of the emitting state for different complex configurations (c, d). The arrows 14 identify the directions of the reorientable distortion, related to adiabatic potential minima 1-4, shown schematically in 5¢ and 54 for P=o and P = 10 kbar. For the calculation of E(P) for a V,Dg, complex the values of complex parameters of Fig. 4 have been used.
	Fig. 6. Dependences of the polarization ratio at #® = (.95 ¢V on the applicd pressure for GaAs:Te (1), GaAs:S (2), GaAs:Sn (3), and GaAs:Si (4). a,c, P || [loo] ; 6.4, Pl [lll] . T(K): a 5, 2; c, d, 17.
	Fig. 1. Unpolarized first-order resonant Raman spectrum of KI:MnO, at 5 K excited at &. = 2.4093 eV, showing intramolecular and localized vibrations. The weak structures at 32.5, 99.9, and 120.8 meV (not labelled) are due to higher-order scattering processes (2vloc, 2vs, Vi + Vioc).
	Fig. 2. Time dependence of the vy Raman scattering intensity at different temperatures. The excitation photon energy £, = 2.4093 eV. The cxcitation power was 20 mW before and after bleaching and 400 mW during bleaching. All intensities are normalized to the incident lascr power (see the text).
	Fig. 3. Time dependence of the vi Raman scattering intensity at different bleaching powers. 7° = 50 K. The intensities are normalized to the incident power which was 20 mW before and after bleaching and otherwise as indicated.
	Fig. 4. Optical absorption of KI:MnO; around the zero-vibrational transition N = 0 at 50 K before (a) and after (b) bleaching together with the differences curve (c). The sample thickness is 2.5 mm. The bleaching was accomplished at 7 = 50 K with 300 mW from a dye laser (Er, = 2.040 eV), the absorption was measured with 0.3 mW. The inset shows the 'A; — 'T, absorption band of KI:MnO7 at 5 К over a larger spectral range.
	Fig. 1. Orientations of the Z-axes of {g} tensor (at low temperature)
	Fig. 2. Experimental spectra of CsMgCl3:Cu2*.
	Fig. 3. Dependences of simulated spectra (SLE model) on the frequency of random jumps v (Hz) : a, 107; b, 108; c, 10%2; a, 1084; e, 1085; f, 1088; g. 10%; A, 10'9; ;, 101
	Fig. 4. Dependences of two low-ficld hyperfine lines on 31°/A valuce
	Fig. 1. Concentration dependence of LaSrAl,_,Cu,O4 lattice constants.
	Fig. 2. EPR spectrum of LaSrAlgggNig 1004, T=293 K, v=35.6 GHz: a, experimental spectrum; b, simulated spectrum.
	Fig. 3. EPR spectrum of LaSrAlo 9gNig.0204, v =9.32 GHz. a, b, experimental spectra at T=2so K and T=7o K, respectively; c, d, the corresponding simulated spectra.
	Fig. 4. Adiabatic potential of NiOg complexes in the case of a tetragonally extended octahedron for the following values of lz“el/ (2B) : a, 5.5; b, 7.5; c, 12.5.
	Fig. 5. EPR spectra of LaSrAl,_,Cu,O4, T=293K; v =35.14 GHz. a, x=0.02; b, х = 0.10.
	Fig. 6. EPR spectra of LaSrAlg.99oCuo. 1004 v =9.48 GHz. Solid lines — experimental; dashed lines ---- theoretical. a, T=293 K, Kı =0.40; b, T=3OK, K;=0.39; c, T=4.2 K, Kır = 0.09.
	Fig. 7. Adiabatic potential of CuOg complexes in the cases of (a) a tetragonally extended octahedron, (b) an octahedron deformed by the hole delocalized on four-plane oxygen ions, and (c) distortions of the complex at the corresponding minima of the adiabatic potential.
	Fig. 8. Structure of a ferromagnetic cluster in a CuO, layer.
	Fig. 1. Gap function at T' = 0 for Eg. (3) with W = —0.19, V 2 = —0.34, 4’ = —2.22. Energies are in meV. Equipotentials are shown in the (k,, ky) plane.
	Fig. 2. Gap function at T' = 0 for Eg. (3) with V; = —0.29, V 2 = —0.52, w = —1.35. Energies are in meV.
	Fig. 3. Gap function at T' = 0 for Eq. (13) with V. = —0.46, w = —1.35 and « = 0.3. Energies are in meV.
	Fig. 4. Gap function at T' = 0 for Eq. (13) with V. = —0.29, u’ = —2.22 and x = 0.3. Energies are in meV.
	Fig. 5. Real part of dw,o at T = O for an isotropic s-wave (solid line), an anisotropic s-wave (dashed line), and the anisotropic d-wave (short-dashed line) case. The respective parameters are (@) Vo = —0.248, Vi = 0, (b) Vo = V) = —0.15 with u' ~ —2.22,and (c) Vo = 0, V| = —0.299 with 4’ = —1.35. Amaux = 17.6meV in each case.
	Fig. 6. The imaginary part of Šww at T = 0 corresponding to the three situations of Fig. 5
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	Fig. 1. The stretching vibrational frequencies (cxpressed in wavenumbers; A) and the electronic levels (C) of Ce calculated with a four-parameter stretching BCM and a four-parameter LCMO tight-binding model, respectively. The present approximated levels are compared with the vibrational levels calculated by Onida and Benedck (B; ['°]) апа Ше п ¢clectronic levels by Troullicr and Martins (D; ['2]), respectively. Note that there are 90 stretching vibrational modes (A) as compared 10 the 180 modes of the whole spectrum (B; here 37 modes below 496 cm™' arc not shown). л
	Fig. 1. Magnetization of an ’as-prepared’ La2Cu044.5 samplc as a function of temperature. The starting temperatures T, to which the sample was quenched from room temperature are indicated. The uppermost curve was obtained after quenching the sample to 5K and slowly heating it to room temperature. Beginning from the lowest data sct cach curve was shifted upwards by a valuc of 5х 1077 ети в' сотрагей 10 Шс preceding onc. The measuring field was 90 G, the arrows indicatc the direction of the temperature change during the measurcment.
	Fig. 2. Dependence of the diamagnetic signal of an ’as-preparcd’ La2CuO44s sample ( z 0.01) on the temperature 7., at which the sample was cquilibrated aficr having been quenched from room temperature to T.,. The diamagnetic signal was probed at the indicated temperatures, 7'y . Equilibration time intervals (i.e. the period for which the sample was held at T.,), At, at 7., were 10 min (a) and 1 h (b).
	Fig. 3. Recovery of magnetization at TmMm=sK of a La2CuO44s ( z 0.04) sample probed in an isochronal annealing experiment at Tan = 170 K and 220 K. Magnetization (e) was measured at 100 G. The full line is a fit with an exponential law with the time constants 7(170 K)=37oos and 7(220K)=1805.
	Fig. 4. The time constants 7(7an) as a function of the anncaling temperature at which the samples were repeatedly annealed as derived from the isochronal anncaling experiments (cf. cxamples in Fig. 3). Differcnt symbols rcfer to different samples: x, B ’as – prepared’ (6 = 0.01); o loaded with cxcess oxygen at 600 °C in a 700 bar oxygen atmosphere 6 = 0.04.
	Fig. 5. The difference AM of the diamagnetic signals measured at Ty = 5 K after equilibration at T.q for 1 h and 10min, i.e. the difference of the lowermost curves of Fig.2 (M(At = 1h- At = 10 min, T,4). The solid line is a fit with the difference of two exponentials as described in the text.
	Fig. 1. A schematic sketch of the smallest magnetic polaron formed in the AF-ordered CuO; planc via doping with an additional hole. The arrows indicate the main direction of spins only.
	Fig. 2. The measured magnetic susceptibility xg versus temperature for various doping concentrations according to [7].
	Fig. 3. Localized dispersionless states that split up from the AF magnon band (hatched region) for an external magnetic field of Ho/Jo = 0.01 and an anisotropic field H 4/Jy = 0.3. The figure is drawn about different values of the magnetic impurity exchange coupling, Js. The relevant part is the region for Js/Jy > 1.5 (see the text).
	Fig. 4. The calculated magnetic susceptibility for the uperturbed AF as a usual quadratic increase towards the Neel temperature. The perturbed part (dotted line) is the average of nine lattice sites around perturbation.
	Fig. 5. Total calculated magnetic susceptibility for different doping concentrations. Notc that with the exceplion of some temperalure-independent background susceptibility the exact lineshape of the cxperimental data (sce Fig. 2) was obtained.
	Fig. 1. The lowest energy E of bound hole-magnon-phonon states (solid lines, left scale) and the number of escorting phonons N, (dashed lines, right scale) for k =k, (e) and k= 0 (D). J//t = 0.3, O/t = 0.15. The hole—phonon continuum edge is shown by the dotted linc.
	Fig. 2. Coexistence of self-trapped (O) and free-hole states (o) for J/t=o.l and Q/1=0.15.
	Fig. 3. Dependence of the ground-state energy E on S for different values of J/t.
	Fig. 1. a) Stabilization process for a spin fluctuation in a single-band quantum antiferromagnet. b) Walk on a square when no fluctuation is initially present.
	Fig. 2. Hopping process of a spin cluster. The first action of (32) on state (1) restores as an intermediate step the AF order which has a k boson with the hole. The second action ends up with state (3) where the cluster has been shifted by two sites compared with (1).
	Fig. 1. The hole spectral function A(kw). Curves 1 to 3 correspond to z = 0.005, 0.058, and 0.252 (u = —2.6, —2.4, and —1.7, respectively); k = (0,7), J = 0.2, n = 0.015. The dotted lines indicate the zero levels of the spectral function, the scale is arbitrary.
	Fig. 2. Energy bands at z = 0.252. The horizontal dotted line shows the position of the chemical potential.
	Fig. 3. The magnon spectral function B(kw). k = (0, 7/10); curves 1 to 4 correspondto z = 0.01, 0.022, 0.045 (u = —2.52, —2.47, —2.45), and 0.252, respectively.
	Fig. 4. The hole density of states. Curves 1 to 4 correspondto z = 0.005, 0.045, 0.11 (д = —2.25), and 0.252, respectively. The dotted lines indicate the zero levels. The arrows show the positions of the chemical potential.
	Fig. 1. Calculated transition energies (shown by continuous curves) of the Isg [(0, 0, 0)] to the (3, 1,0) and (4, 1,0) metastable states including the full effects of polaron interaction and band nonparabolicity for the complete field range are shown. The resonant polaron effect is clearly seen to lead to avoided crossings of the (3, 1,0) and (4, 1,0) metastable states with the states I‘l’l s q) , and |‘l‘2p ,q) . The experimental points are shown by A. The calculated transition energies excluding the polaron effect are also shown (by dashed curves).
	Fig. 2. The calculated polaron correction for the Is, 2p,, and 2p_ energy levels at selected values of the magnetic field for a GaAs/GaAlAs MQW in the nonresonant region in which both the wells and barriers have a width of 150 A.
	Fig. 1. Energies relative to the T, ground state for n =O.l and @, = @, = 0 with the key: T 1 = solid lines, T 7 = short dashes, E states and their accidentally chenerate T 1 states = medium dash, A 9 = long dash.
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	Fig. 2. Contrast in the functional forms of the lowest conventional state (dashed line) and the lowest nonconventional state (’exotic’, solid line), represented by optimized trial wave function (10), which practically coincides with the numerically exact result. Parameter set: p =-1, D = 15, T = 50.
	Fig. 3. Energy uncertainty of variational ansatz (10), the approximate wave function deduced by the Fröhlich-type transformation and adiabatic wave function (15) for p = —l. Solid line: T= 15, dashed line: T= 50.
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