Proc. Estonian Acad. Sci. Phys. Math., 208%,,2, 100-107
https://doi.org/10.3176/phys.math.2007.2.05

Elastic waves in heterogeneous materials
as in multiscale-multifield continua
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Abstract. A multifield continuum to describe grossly the dynamic behaviour of composite
materials (fibre reinforced, polymers, masonry-like, etc.) is proposed using a multiscale modelling
based on the hypotheses of the classical molecular theory of elasticity. Referring to a one-
dimensional sample, the possibility of reveglithe presence of internal heterogeneities is
investigated.
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1. INTRODUCTION

The mechanical behaviour of complex materials, characterized by the
presence of heterogeneities of significamesnd texture at finer scales, strongly
depends on their microstructural featuréscking in material internal scale
parameters, the classical continuousdel seems not always appropriate to
describe the macroscopic behaviour ofhsumaterials taking into account the
size, orientation, and dispositiaf the micro-heterogeneitie§.[ Moreover, the
basic hypothesis of local uniformity othe classic stress/strain fields is
inappropriate in critical regions witlhigh gradients, e.g. in the case of
geometrical or loading singularities. Tleedifficulties, while leading to ill-posed
problems in the case of nonmonotonic constitutive 1&s ¢laim for develop-
ing continuous models different from the simple Cauchy one (grade 1).

In this work the effectiveness of nonstandard continuum modelling for these
materials is investigated making recourse to the theory of multifield confjnua [
and addressing the relevant wave propaggproperties. Attention is focused on
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composite media made of short, stifind strong fibres embedded in a more
deformable matrix that, due to manufactgratefects or lack of cohesion, presents
distributed microcracks. Starting fromettkinematics of a complex lattice model
(micromodel), the multifield continuum (macromodel) is built up using a strategy
based on an energy equivalence principlkirig different material scales (multi-
scale modelling)?]. This continuum has additional field descriptors accounting
for the presence of the microstructumich must satisfy additional balance
equations, as in the so-called models with configurational foffles [

The capability of such a multiscale-tifield continuum to reveal the
presence of material microstructure is investigated by studying the wave pro-
pagation in a one-dimensional system describing a material with a microcracked
elastic matrix. In particular, it is showthat the additional microstructural field
descriptors make the equations of timo dispersive, with phase-velocities
changing with frequency. This is the pbaufeature of most models proposed to
overcome the intrinsic drawbacks of tiemple Cauchy continuum, such as rate-
dependent, nonlocal, strain gradient models'{j. In all of these models, non-
standard strain measures implying spatial or time derivatives of an order other
than the second order in the equations of motion, are introduced. In the multifield
models additional stress measures are also introduced, corresponding in the sense
of the virtual work to the nonstandard strain measures involved, and this
circumstance makes the problem thermodynamically consisteribfie to the
dispersion properties, the multifield modlows to be able to describe changes
in the shape of travelling waves genera$sociated with scattering. This seems
a necessary feature to study the strain localization phenofjethaf often
characterize the mechanical behaviofibrittle composite materials.

2. THE MULTISCALE-MULTIFIELD MODEL

The continuous model of the generalized homogeneous material (macro-
model) is built up based on the linearized kinematics of a proper lattice model
(micromodel) of the kind proposed ih'f]. Our reference material is a fibre-
reinforced microcracked composite, which could be a ductile polymer composite
with long carbon fibres as well as a soary-like material with stone/bricks
embedded in a mortar matrix, both witldigtribution of slit microcavities in the
matrix. At the microscopic level such a material is described by two interacting
lattice systemsone lattice made of interacting rigid particles of given shape,
representing the fibres, and the other latti@de of interacting slits of arbitrary
shape with a predominant dimemrsj representing the microcracks.

To identify the constitutive functions folne continuum internal and external
(inertial) actions, the procedure proposedjiig adopted. This procedure allows
us to link two different scale modédbmsed on two hypotheses: (i) macroscopic
homogeneous deformations are imposed to a representative volume element
(module) of the material periodic microstructure; (ii) the volume average of the
stored energy function of the module equated, through the localization
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theorem, to the strain energy density of the macromodel. These hypotheses are
standard in the classical moldar theory of elasticity'f], as originally
delineated in the basic work of Voidf][

Briefly, the linearized strain measures of the module are as follows: (a) the
relative displacement between two poipfs and p®, belonging to two particles
A and B, represented by the vectaf®; (b) the relative rotation betweeh and
B, represented by the skew-symmetric ten#o?’; (c) the opening-displace-
ment on a slitH (K), centred at the positioh(k), represented by the vectdf
(d*); (d)the relative displacemend” - d*: (e) the relative displacement
between two pointp® andp", of a particleA and a slitH, also accounting for
d", represented by the vectas™”. The generalized forces associated with the
above kinematic quantities are: (a) the force and (b) the couple be#veen
B, represented by the vector”® and the skew-symmetric tensdC®,
respectively; (c) the opening force ar (K), represented by the vectaf (z°);
(d) the slit interaction force, represented by the veetdr (e) the particle-slit
interaction force, represented by the veadt.

The mean strain energy of the module, of volifmereads

— 1 al al as~a 1 al a
g =§{Za{t Pu -WE(p® -p”) +5CT W —Wb)}

+thrf)‘| mh +thzhk mdh _dk) +zahqah deah _Wa(pa _ph))}, (1)

where, to a first approximation, all of the generalized forces are assumed linear
elastic functions of the strain measureg®(u®); C®W?®); z'@d");
Z™(d"-d"); g*" (&™), with W? the rotation of the reference particle.

Based on hypothesis (i), all of the kinematic descriptors in Eq. (1) are
expressed in terms of regular fieldfided on the current configuration of the
continuum (multifield), namely: thetandard displacement vector field;, the
microrotation tensor field (skew-symmetric)y; and the microdisplacement
vector field, d. The nonstandard microscopic fields account for the rotations of
the individual fibres and for the didiuted displacement jump due to the
presence of microcracks in the matrix.enh(hypothesis (ii)), the strain energy
density for the continuum can be derived as

ezé{SEQDu- Wy %SD]] W Zd 20 d}. )

The ensuing quantitie§S S, z Z} have the meaning of generalized stress
fields: S is a nonsymmetric stress tens6r;is the couple-stress tensar;is the
internal volume force related to the preseif the microcracks, playing the role
of the force responsible for the intermflanges of the system configuratidf,[
and Z is the microstress tensor. The stress—strain relations read
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S=A (O Wy BOW Cd I d,
S=E(Ouw Wy FOW Gd H d, 3)
z= | O W)HOW Md N d,
Z=0(Ouw Wy POW Qd R d,

where A-R are elastic tensors of differemtder, with components depending on
the size, shape, arrangement, and oriemtaof the internal phases, besides the
elastic constants of the matrix. The material hyperelasticity entails symmetry
relations between the components of the pairs of tengo®), (C,1), (D, 0),
(G,L), (H,P), (N,Q). If the material is centrally symmetric, the tensors
B,C,E,H,I,N,P,Q are null. Note that if the microcracks are not present, the
identified continuum reduces to a Cosserat continuum.

The energetic equivalence criterion calso be postulated for the external
actions, and the continuum, macro and mjianertial actions can be identified as
functions ofli, W, andd, where the dot indicates time derivative.

3. WAVE PROPAGATION IN A MICROCRACKED CONTINUUM

A simplified model in which particle rotationsV*(W"), are neglected is
considered. This physically correspondsatsumed point-size fibres coinciding
with matrix particles. In this case tigentification procedure yields null tensors
F,G,H,L,P. If also considering microcracks arranged according to the central
symmetry, the constitutive equations for the stress measures become

S=A Ouw DJd,

5=0 @)
z= Md,

Z=00uw RJd.

According to the axiomatic description [ the equations of motion and
micromotion are derived by assuming tlygiigalence of the internal and external
works for anyOu, d, Od, and an additional balance equation ensues from the
vanishing of the internal work under macro and micro rigid motithhs [

divS+b =pii,
divZ -z=pd, (5)
S-S"+z0O0d dd&# Z db0 dz" o,

where b is the body density forcgy and p are the identified macro and micro
mass densities.

In order to verify the capability of ¢hmultifield continuum to reveal the
presence of the microstructure, wave pgaiin is analysed. As a sample test, a
one-dimensional bar characterized by stribution of microcracks of length,,
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arranged according to the transverserggnt symmetry, is considered. Denoting
with u andd the longitudinal components tife macrodisplacement and micro-
displacement fields, respectively, thguations of macro- and micromotion for
this problem read

ti-a’u" -pd" =0, d-ed —$%d +nd =0, (6)

whereo” =A/p, B=D/p, £=0/u, ¢*=R/u, andn=M/u, with A,D,O,R,
and M being the sole independent components of the constitutive tensors in
Eqgs (3). The apex indicates siphderivative. In particular,A =Y, the axial
stiffness; R=nY/p,nl,, and M = mYp, /xl,,, where p is the microcrack
density per unit length, and and m are constants depending on the number and
arrangement of the slits in the module. The coupling eraD also depends on
the slit size and arrangement and on the elastic constants of the matrix. As the
micromass density is the mass relevant to microcracksy and thuse = f.

Denoting with x the coordinate of the bar axis andhe time variable, let us
consider waves which propagate in #direction with the wave number k and
angular frequencw. A general solution fou andd of the form

u=u,expl (kx-ot)] d=d,expli (kx —wt)] (7
is assumed, witld, andu, constant. Substitution of Eqs (7) into Egs (6) gives

(Q-c1)v=0, (8)

where

o B
B¢*+n/k®

and | is the identity tensor. A nontrivial kion of system (8) exists if the
characteristic equatiow? - ¢®)(@2- c*+ n/k? —-p2=0 is satisfied. Tenso®

plays the role of the acoustic tensortlodé multifield system; the positive square
roots of its eigenvalues;,, ¢,, are the macro and micro wave velocities. In
general, both these velocities depend on the wave number, k, and the system is
dispersive. Note that if the coupling terf), is null, Eq. (6a) corresponds to the
standard wave equation, satisfied by a macrowave propagating with constant
macrovelocity,c, =a, while Eq. (6b) remains dispersive with velocity depend-

ing on the wave number or frequency, =+/¢°+n/k*=wd/\Jo’-n
(dispersion relation). This circumstanoecurs when no interactions between

particles and slits are considered in the lattice model.

The solution for the multifield problem rde searched for as a superposition
of waves propagating with different velocities depending on frequencies and
material parameters. By way of exampéd,us consider the superposition of two
linear harmonic wavesy and d, of equal amplitudep_, with different wave

MAud c=olk [Q]{

104



numbers,k, and k,, and different phase-velocities, and c,. Their super-
position has the form u+d=2u,sink&-"a¢)cod k(- ¢ ) Z with
k=(k,+ky)/2, Dk=k,-ky, T=(q,+¢)2 c,=¢,-¢. Due to the
dispersion properties, the group velocity, generally differs from the average
velocity,€, and the shape of the resulting wave is altered. Physically, this seems
to be a consequence of partial reflections of waves occurring in encountering
microcracks (scattering). The presence of microcracks in the multifield model,
represented by the additional fielti can then be interpreted as a disturbance
spread along the bar that, different frdme classical continuum, alters the shape

of travelling waves, depending on the microcrack density. In particular, for low-
damaged materials the disturbance is localized as in a beating-like phenomenon
(Fig. 1a), while in high-damaged materials it spreads along theab@ed by the
elastic wave (Fig. 1b). Finally, according to experimental results, both the
velocity and the average amplitude, of the resulting wave decrease with the
increase in microcrack density (Figs 2, 3).
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Fig. 1. Travelling waves along the bar: (a) low microcrack density, (b) high microcrack density.
The elastic wave is shown by the thingljthe resulting wave by the thick line.
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Fig. 2. Phase-velocities vs microcrack densityrig. 3. Average amplitude ratio vs microcre
The elastic bar is shown by the thin line, théensity. The elastic bar is shown by the thin
microcracked bar by the thick line. the microcracked bar by the thick line.
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4. FINAL REMARKS

This work provides a multifield comtuum for fibre-reinforced microcracked
bodies accounting for the presence of fibres and microcracks by means of
additional kinematic and dynamic fields. Main features of the model are the
presence of internal length scalasdahe capability of exhibiting dispersion
properties. Analysis of wave propagatiorthe 1D problem shows the influence
of microcrack density and the possibility of describing changes in the shape of
the travelling waves generally associated with scattering. Based on dispersion
properties, which can result in a well-posed of PDEs, further analysis will be
concerned with describing fracture phermma taking material nonlinearities into
account.
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Elastsed lained heterogeensetes materjalides
kui multiskalaar setes mitmekomponentsetes
pidevates keskkondades

Patrizia Trovalusci ja Giuseppe Rega

Kasutades multiskalaarset modelleerimist, mis baseerub klassikalise moleku-
laarse elastsusteooria hiipoteesidel, datesl mitmekomponentse pideva kesk-
konna mudel komposiitmaterjalide (kiududega armeeritud materjalide, polimee-
ride, muduritise tutpi materjalide jne) diinaamika ligilahedaseks kirjeldamiseks.
Lainelevi them@6tmelisele probleemilggimedes on uuritud vBimalust maarat-
leda sisemiste heterogeensuste olemasolu materjalides.
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