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Abstract. To construct high-order numerical algorithms for a linear weakly singular Volterra
integral equation of the second kind, we first regularize the solution of the integral equation by
introducing a suitable new independent variable so that the singularities of the derivatives of
the solution will be milder or disappear at all. After that we solve the transformed equation by
a piecewise polynomial collocation method on a mildly graded or uniform grid.
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1. INTRODUCTION

Let b ∈ R = (−∞,∞), b > 0, ∆b = {(x, y) : 0 ≤ y ≤ x ≤ b}. We consider
a linear integral equation of the form

u(x) =

∫ x

0
(x − y)−αK(x, y)u(y)dy + f(x), x ∈ [0, b] , (1)

where0 < α < 1. The given functionsK : ∆b → R andf : [0, b] → R are
assumed to be (at least) continuous in order to quarantee the existence of a unique
continuous solutionu : [0, b] → R. The solutionu(x) of Eq. (1) is typically
nonsmooth atx = 0, even ifK andf are smooth (see, for example, [1,2]). Let
Cm(∆b) be the set ofm times continuously differentiable functionsK : ∆b → R

and letCm,ν [0, b], m ∈ N, ν ∈ R, ν < 1, be the collection of continuous functions
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u : [0, b] → R, which arem times continuously differentiable in(0, b] and such
that the estimate

∣

∣u(j)(x)
∣

∣ ≤ c











1 if j < 1 − ν ,

1 + | log x| if j = 1 − ν ,

x1−ν−j if j > 1 − ν ,

(2)

holds with a constantc = c(u) for all x ∈ (0, b] andj = 1, . . . , m. The regularity
of the solution of Eq. (1) can be characterized by

Lemma 1 [2]. If K ∈ Cm(∆b), f ∈ Cm,ν [0, b], m ∈ N, ν ∈ R, ν ≤ α,
0 < α < 1, then Eq.(1) has a unique solutionu ∈ Cm,α[0, b].

In collocation methods the singular behaviour of the solution can be taken into
account by using special graded grids with the nodes

xj = b(j/N)r, j = 0, 1, . . . , N ; r ∈ R, r ≥ 1 . (3)

Here N ∈ N = {1, 2, . . .} and r characterizes the nonuniformity of the grid.
High-order methods use large values ofr (see, for example, [1−3]). A problem
which may arise is that large values ofr may create significant round-off errors in
calculations since the length of the first subinterval[x0, x1] = [0, bN−r] of [0, b]
(see (3)) becomes very small asN is increased. As an example, if we assume that
m = 3, α = 1/2 andr = m/(1 − α) = 6, then we have to start the collocation
method on a subinterval whose length is of orderN−6. It is obvious, even for
moderate values ofN , that this may create serious round-off errors in subsequent
calculations and the final linear system of algebraic equations which we have to
solve may become ill-conditioned.

The purpose of the present paper is to construct such high-order algorithms
for the numerical solution of Eq. (1) which do not need strongly graded grids and
are numerically more stable than usual collocation algorithms. To this end, we
first regularize the solution of Eq. (1) by introducing a suitable new independent
variable so that the singularities of the derivatives of the solution will be milder
or disappear at all. After that we solve the transformed equation by a piecewise
polynomial collocation method on a mildly graded or uniform grid and discuss the
attainable rate of convergence of the obtained numerical solutions (see Theorem 7).
Our approach is based on the ideas of [4,5] and smoothness properties of the exact
solution of Eq. (1) given by Lemma 1. We refer also to [6], where another approach
is used to produce and solve a transformed integral equation having a smoother
solution than the initial one.
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2. PIECEWISE POLYNOMIAL INTERPOLATION

For givenN ∈ N, r, b ∈ R, r ≥ 1, b > 0, let Π(r,b)
N : 0 = x0 < . . . < xN = b

be a partition (a grid) of the interval[0, b] with the gridpoints (3). For given integers

m ≥ 0 and−1 ≤ d ≤ m − 1, let S
(d)
m (Π

(r,b)
N ) be the spline space of piecewise

polynomial functions on the gridΠ(r,b)
N :

S
(d)
m

(

Π
(r,b)
N

)

=
{

v : v
∣

∣

[xj−1,xj ]
=: vj ∈ πm, j = 1, . . . , N ;

v
(k)
j (xj) = v

(k)
j+1(xj), 0 ≤ k ≤ d; j = 1, . . . , N − 1

}

.

Hereπm denotes the set of all polynomials of degree not exceedingm. Note that
the elements ofS(−1)

m (Π
(r,b)
N ) = {v : v

∣

∣

[xj−1,xj ]
∈ π, j = 1, . . . , N} may have

jump discontinuities at the interior pointsx1, . . . , xN−1 of the gridΠ
(r,b)
N . For a

m ∈ N we choosem parametersη1, . . . , ηm satisfying

−1 ≤ η1 < . . . < ηm ≤ 1 , (4)

and set

xjl = xj−1 + (xj − xj−1)(ηl + 1)/2 , l = 1, . . . , m; j = 1, . . . , N . (5)

To a continuous functionz : [0, b] → R we assign a piecewise polynomial
interpolation functionPNz : [0, b] → R as follows: 1) on every subinterval
[xj−1, xj ] (j = 1, . . . , N ), PNz is a polynomial of degreem − 1; 2) PNz
interpolatesz at the points (5), i.e. (PNz)(xjl) = z(xjl), l = 1, . . . , m;
j = 1, . . . , N . We introduce also an interpolation operatorPN which assigns for
every continuous functionz : [0, b] → R its piecewise polynomial interpolation
PNz.

Lemma 2 [7]. Let T : L∞(0, b) → C[0, b] be a linear compact operator. Then
‖T − PNT‖L(L∞(0,b),L∞(0,b)) → 0 asN → ∞.

Lemma 3 [7]. Let z ∈ Cm,ν [0, b], m ∈ N, −∞ < ν < 1. Let the
interpolation nodes(5) with gridpoints (3) and parameters(4) be used. Then
supx∈[0,b]

∣

∣z(x) − (PNz)(x)
∣

∣ ≤ cε
(m,ν,r)
N , wherec does not depend onN and

ε
(m,ν,r)
N =































N−m for m < 1 − ν, r ≥ 1 ;

N−m(1 + log N) for m = 1 − ν, r = 1 ;

N−m for m = 1 − ν, r > 1 ;

N−r(1−ν) for m > 1 − ν, 1 ≤ r < m/(1 − ν) ;

N−m for m > 1 − ν, r ≥ m/(1 − ν) .

(6)
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3. COLLOCATION METHOD

Consider first the standard piecewise polynomial collocation method. We look
for an approximationv to the solutionu of Eq. (1) determiningv from the following
conditions:v ∈ S

(−1)
m−1(Π

(r,b)
N ), m ≥ 1, and

v(xjl) =
xjl
∫

0

(xjl − y)−αK(xjl, y)v(y)dy + f(xjl) ,

l = 1, . . . , m; j = 1, . . . , N ,

(7)

with {xjl}, given by (5).

Theorem 4 [2]. Let K ∈ Cm(∆b), f ∈ Cm,α[0, b], m ∈ N, 0 < α < 1. Then the
equalities(7) define for all sufficiently largeN ∈ N a unique approximationv to
u, the solution of Eq.(1), and the following error estimate holds:

sup
x∈[0,b]

|v(x) − u(x)| ≤ c

{

N−r(1−α) for 1 ≤ r < m/(1 − α) ,
N−m for r ≥ m/(1 − α) .

(8)

Herec is a constant which does not depend onN .

It follows from (8) that the use of uniform grids (r = 1) leads to the
convergence of order less than one, regardless of the degree of theapproximating
spline functionsv. On the other hand, if the gridpoints (3) withr ≥ m/(1 − α)
are used, then a convergence behaviour of orderN−m can be expected. In practice,
using computer arithmetic, this conditionr ≥ m/(1−α) onr may be too restrictive
(especially for largem andα close to1, α < 1). In the next section we undertake
a preliminary change of variables so that the solution of transformed equation will
be smoother, which enables exploiting a uniform or mildly graded grid.

4. MODIFIED COLLOCATION APPROXIMATIONS

Introducing in (1) the change of variables

y = b1−ksk , x = b1−ktk (t, s ∈ [0, b], k ∈ N) , (9)

we obtain a new integral equation

uk(t) =

t
∫

0

Kk(t, s)uk(s)ds + fk(t) , t ∈ [0, b] , (10)

whereuk(t) = u
(

b1−ktk
)

, fk(t) = f
(

b1−ktk
)

and
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Kk(t, s) = kb(1−k)(1−α)
(

tk − sk
)−α

K
(

b1−ktk, b1−ksk
)

sk−1, k ∈ N . (11)

We define an integral operatorTk by

(

Tkz
)

(t) =

t
∫

0

Kk(t, s)z(s)ds , t ∈ [0, b], k ∈ N . (12)

Lemma 5. If K ∈ C(∆b), thenTk (k ∈ N) is compact as an operator from
L∞(0, b) to C[0, b] and toL∞(0, b) too.

Proof. On the basis of (11) we obtain thatKk(t, s) is continuous for0 < s < t and
∣

∣Kk(t, s)
∣

∣ ≤ c(t − s)−α, t, s ∈ [0, b], s < t, 0 < α < 1. Now the assertions of
Lemma follow sinceKk(t, s) is weakly singular ass → t.

On the basis of Lemma 5 we obtain that ifK ∈ C(∆b) andf ∈ C[0, b], then
Eq. (10) has a unique solutionuk ∈ C[0, b] for everyk ∈ N.

Lemma 6. Assume thatu ∈ Cm,α[0, b], m ∈ N, 0 < α < 1, uk(t) = u(b1−ktk),
t ∈ [0, b], k ∈ N. Thenuk ∈ Cm,νk [0, b], whereνk = 1 − k(1 − α).

Proof. We observe thatuk ∈ C[0, b] and uk(t) is m times continuously
differentiable for0 < t ≤ b. Using (2), we obtain by successive differentiation of
u(b1−ktk) that|u(j)

k (t)| ≤ ctk(1−α)−j , j = 1, . . . , m, or, equivalently,
∣

∣u
(j)
k (t)

∣

∣ ≤ c

if j ≤ 1 − νk, and
∣

∣u
(j)
k (t)

∣

∣ ≤ c t1−νk−j if j > 1 − νk, where0 < t ≤ b,
νk = 1 − k(1 − α) andj = 1, . . . , m. Now the assertion of Lemma follows.

To find an approximate solution of Eq. (1), we use the following approach:
using (9), we first produce a transformed integral equation (10); thenwe find an
approximationv ∈ S

(−1)
m−1(Π

(r,b)
N ) to uk, the solution of Eq. (10), determiningv

from the conditions

v(xjl) =

xjl
∫

0

Kk(xjl, s)v(s)ds + fk(xjl) , l = 1, . . . , m; j = 1, . . . , N , (13)

where{xjl} are the nodes (5). After that we define an approximationuN,k to u, the
solution of Eq. (1), by setting

uN,k(x) = v
((

bk−1x
)1/k)

(x ∈ [0, b], v ∈ S
(−1)
m−1(Π

(r,b)
N ), k ∈ N) . (14)

Theorem 7. Let K ∈ Cm(∆b), f ∈ Cm,α[0, b], m ∈ N, 0 < α < 1, and assume

that the underlying grid sequenceΠ(r,b)
N satisfies(3). Then, for all sufficiently large

N ∈ N, sayN ≥ N0, and for every choice of parameters(4) andk ∈ N, Eqs.(13)
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and (14) determine a unique approximationuN,k to the solutionu of Eq. (1) and
the following error estimate holds:

sup
x∈[0,b]

∣

∣u(x) − uN,k(x)
∣

∣ ≤ c ε
(m,νk,r)
N , N ≥ N0 . (15)

Herec is a constant which is independent ofN , νk = 1− k(1−α) andε
(m,νk,r)
N is

given by(6).

Proof. We write (10) in the formuk = Tkuk + fk, with Tk, defined by (12).
As the homogenous equationuk = Tkuk has only the trivial solutionuk = 0,
it follows from fk ∈ C[0, b] and Lemma 5 that the equationuk = Tkuk + fk

possesses a unique solutionuk = (I − Tk)
−1fk ∈ L∞(0, b). Here I is the

identity mapping and(I−Tk)
−1 ∈ L(L∞(0, b), L∞(0, b)). Further, the conditions

(13) have the operator equation representationv = PNTkv + PNfk, with PN

defined in Section 2. From Lemma 2 and from the boundedness of(I − Tk)
−1

in L∞(0, b) we obtain thatI − PNTk is invertible inL∞(0, b) for all sufficiently
largeN , N ≥ N0, and the norms of(I − PNTk)

−1 are uniformly bounded in
N : ‖(I − PNTk)

−1‖L(L∞(0,b),L∞(0,b)) ≤ c, N ≥ N0. Thus, forN ≥ N0, the

equationv = PNTkv + PNfk possesses a unique solutionv ∈ S
(−1)
m−1(Π

(r,b)
N ). We

have for it anduk, the solution of the equationuk = Tkuk + fk, thatv − uk =
(I −PNTk)

−1(PNuk −uk). Therefore
∥

∥uk − v
∥

∥

L∞(0,b)
≤ c

∥

∥PNuk −uk

∥

∥

L∞(0,b)
,

N ≥ N0. Applying Lemmas 1, 6, and 3, we obtain that‖uk − v‖L∞(0,b) ≤
cε

(m,νk,r)
N , N ≥ N0. This, together withuk(t) = u(b1−ktk) and (14) yields the

estimate (15).

5. NUMERICAL RESULTS

We consider Eq. (1), whereα = 1/2, K(x, y) = 1, f(x) = x1/2 − πx/2, and
b = 1. It is easy to check that in this caseu(x) = x1/2 is the exact solution and
the assumptions of Theorem 7 aboutK andf hold with α = 1/2 and arbitrary
m ∈ N. This equation was solved numerically by method {(13),(14)}. Some of
the results obtained are presented in Table 1 fork ∈ N (see (9)),r ∈ [1,∞),
N ∈ N (see (3)),m = 2, η2 = −η1 = 1/

√
3 (see (4)). In order to calculate the

error sup0≤x≤b |u(x) − uN,k(x)| = sup0≤t≤b |u(tk) − uN,k(t
k)| (see (14), (15)),

we have takent = τj,l,r, whereτj,l,r = xj−1 + l(xj − xj−1)/20, l = 0, 1, . . . , 20;
j = 1, . . . , N , with xj = xj,r (j = 1, . . . , N ), given by (3) forb = 1. In fact, in
Table 1 the error

δ
(k,r)
N =

{

max
∣

∣u(τk
j,l,r) − uN,k(τ

k
j,l,r)

∣

∣ : l = 0, 1, . . . , 20; j = 1, . . . N
}

and the ratio%(k,r)
N = δ

(k,r)
N/2 /δ

(k,r)
N for different values ofk, r, andN are given.
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Table 1. Errorsδ
(k,r)
N and ratios%(k,r)

N = δ
(k,r)
N/2 /δ

(k,r)
N

N δ
(1,1)
N %

(1,1)
N δ

(3,1)
N %

(3,1)
N δ

(3,4/3)
N %

(3,4/3)
N

8 1.2E − 1 1.6 5.5E − 3 2.9 2.3E − 3 4.2
16 8.1E − 2 1.5 2.0E − 3 2.8 5.2E − 4 4.3
32 5.6E − 3 1.4 6.9E − 3 2.8 1.2E − 4 4.2
64 3.9E − 3 1.4 2.5E − 4 2.8 3.0E − 5 4.0

From Theorem 7 forα = 1/2 and m = 2 we can derive the following

convergence results. The ratio%(k,r)
N ought to be approximately21/2 ≈ 1.4 for

{k = 1, r = 1}, 23/2 ≈ 2.8 for {k = 3, r = 1} and 4 for{k = 3, r ≥ 4/3}.
From Table 1 we can see that the numerical results are in good agreement with the
theoretical estimate (15).
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Nõrgalt singulaarse Volterra integraalvõrrandi
lahendamine muutujate vahetuse abil

Arvet Pedas ja Gennadi Vainikko

On vaadeldud lineaarse nõrgalt singulaarse tuumaga Volterra-tüüpi integraal-
võrrandi kõrget järku täpsusega lähislahendite leidmist ühtlase või peaaegu ühtlase
võrgu korral. Selleks teisendatakse võrrand kõigepealt sobiva muutujate vahetuse
abil kujule, mille lahend on lähtevõrrandi lahendist tunduvalt siledam. Seejärel
lahendatakse siledama lahendiga võrrand kollokatsioonimeetodiga ühtlase või
nõrgalt gradueeritud võrgu korral.
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