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Abstract. To construct high-order numerical algorithms for a linear weakly singular Volterra
integral equation of the second kind, we first regularize the solution of the integral equation by
introducing a suitable new independent variable so that the singularities of the derivatives of
the solution will be milder or disappear at all. After that we solve the transformed equation by
a piecewise polynomial collocation method on a mildly graded or uniform grid.
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1. INTRODUCTION

Letb € R = (—o0,00),b >0, Ay = {(x,y) : 0 <y <z < b}. We consider
a linear integral equation of the form

u(x) = /0 @y K yuldy + f@), ze0b, @)

where0 < a < 1. The given functiondl : A, — Randf : [0,b] — R are
assumed to be (at least) continuous in order to quarantee the existence of a unique
continuous solution: : [0,b] — R. The solutionu(z) of Eq. (1) is typically
nonsmooth at: = 0, even if K and f are smooth (see, for examplé;’]). Let
C™(Ap) be the set ofn times continuously differentiable functiods : A, — R

and letC™"[0,b], m € N, v € R, v < 1, be the collection of continuous functions
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u : [0,b] — R, which arem times continuously differentiable if0, b] and such
that the estimate

1 if j<1l-—v,
{u(j)(m)‘gc 1+ |logz| if j=1-v, (2)
=i if 7>1—-v,
holds with a constant = ¢(u) for all z € (0,b] andj = 1, ..., m. The regularity

of the solution of Eq. (1) can be characterized by

Lemma 1[%]. If K € C™(Ay), f € C™¥[0,b], m € N, v € R, v < q,
0 < a < 1, then Eq(1) has a unique solution € C"™*[0, b].

In collocation methods the singular behaviour of the solution can be taken into
account by using special graded grids with the nodes

zj=0b({/N)", j=0,1,...,N;reR, r>1. 3

Here N € N = {1,2,...} andr characterizes the nonuniformity of the grid.
High-order methods use large valuesrofsee, for example,'{3]). A problem
which may arise is that large valuesiofay create significant round-off errors in
calculations since the length of the first subinterual z1] = [0,bN "] of [0, b]

(see (3)) becomes very small Asis increased. As an example, if we assume that
m = 3,a =1/2andr = m/(1 — a) = 6, then we have to start the collocation
method on a subinterval whose length is of or@er®. It is obvious, even for
moderate values aV, that this may create serious round-off errors in subsequent
calculations and the final linear system of algebraic equations which wetbav
solve may become ill-conditioned.

The purpose of the present paper is to construct such high-ordanthigs
for the numerical solution of Eq. (1) which do not need strongly gradits gind
are numerically more stable than usual collocation algorithms. To this end, we
first regularize the solution of Eq. (1) by introducing a suitable new indeget
variable so that the singularities of the derivatives of the solution will be milder
or disappear at all. After that we solve the transformed equation by awsse
polynomial collocation method on a mildly graded or uniform grid and discuss the
attainable rate of convergence of the obtained numerical solutions (seechin 7).
Our approach is based on the ideasof|[and smoothness properties of the exact
solution of Eq. (1) given by Lemma 1. We refer also%j jvhere another approach
is used to produce and solve a transformed integral equation having dh&moo
solution than the initial one.
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2. PIECEWISE POLYNOMIAL INTERPOLATION
ForgivenN e N,r,be R, r > 1,b> 0, Ietﬂg\’}’b) 0=z <...<xNy =0
be a partition (a grid) of the interv@), b] with the gridpoints (3). For given integers
m>0and—1 <d <m—1, let Sﬁ‘?(l‘[%’b)) be the spline space of piecewise

polynomial functions on the griﬂg\’}’b) :

57(7?) (H%’b)) — {v : U’[xj,l,zj] =V EMy, j=1,...,N;

Herew,, denotes the set of all polynomials of degree not exceedingNote that

(=1 )y _ : :
the elements of,, ' (IIy"”) = {v : vhxjiwj] €mj=1,...,N} may have
jump discontinuities at the interior poinis;, ..., zy_1 of the grid H(Nr’b). For a
m € N we choosen parametersy, . .., n,, satisfying
—1<m<...<nn<1, (4)

and set
iL‘jl:wj_1+(l‘j—$j_1)(771+1)/2, I=1,....m;5=1,...,N. (5)

To a continuous functionr : [0,0] — R we assign a piecewise polynomial
interpolation functionPyz : [0,b] — R as follows: 1) on every subinterval
[zj—1,2;] = 1,...,N), Pyz is a polynomial of degreen — 1; 2) Pyz
interpolatesz at the points (5), i.e. (Pyz)(zj) = z(zj), | = 1,...,m;
j=1,...,N. We introduce also an interpolation operatéy which assigns for
every continuous function : [0,b] — R its piecewise polynomial interpolation
Pyz.

Lemma 2[7]. LetT : L>=(0,b) — C]0,b] be a linear compact operator. Then
||T — PNT||£(Loo(O7b)7Loo(07b)) —0asN — oo.

Lemma 3 [7]. Letz € C™¥[0,b], m € N, —oo < v < 1. Letthe
interpolation nodeg5) with gridpoints (3) and parameterg4) be used. Then

(m,v,r)

sup,epo. |2(2) — (Pnz)(z)| < ce”™", wherec does not depend oN and
N—™ for m<l—v,r>1,
N™™1+1ogN) for m=1—-v,r=1;
85\7,"’”’1”) =J{ N ™ for m=1—v,r>1; (6)
N-r(=v) for m>1—-v,1<r<m/(1-v);
N—™ for m>1—v,r>m/(1—v).
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3. COLLOCATION METHOD

Consider first the standard piecewise polynomial collocation method. We look
for an approximatiom to the solution: of Eq. (1) determining from the following

conditions:v € SfTL__l{(HEG’b)), m > 1, and

8

gl

v(zy) = bf(wjz —y) " K (2, y)v(y)dy + f(z;),
l=1,....m; j=1,...,N,

(7)

with {z;}, given by (5).

Theorem 4[2]. LetK € C™(Ay), f € C™2[0,b], m € N,0 < a < 1. Then the
equalities(7) define for all sufficiently largéV € N a unique approximatiom to
u, the solution of Eq(1), and the following error estimate holds

) N—T=a) for 1<r<m/(1—a),

Herec is a constant which does not depend/gn

It follows from (8) that the use of uniform grids-(= 1) leads to the
convergence of order less than one, regardless of the degreeagphaximating
spline functionsy. On the other hand, if the gridpoints (3) with> m/(1 — «)
are used, then a convergence behaviour of aMiel can be expected. In practice,
using computer arithmetic, this conditior> m/(1—«) onr may be too restrictive
(especially for largen anda close tol, a < 1). In the next section we undertake
a preliminary change of variables so that the solution of transformed equeitio
be smoother, which enables exploiting a uniform or mildly graded grid.

4. MODIFIED COLLOCATION APPROXIMATIONS
Introducing in (1) the change of variables
y=0"Fs* z=b"Fr (t,5€[0,b],k e N), (9)

we obtain a new integral equation

t

uk(t) = /Kk(t, S)Uk(s)dS + fk(t) , te€ [0, b] , (10)
0

whereuy,(t) = u(b'*t*), fi(t) = f(b'~*t*) and
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Ki(t,s) = kb =PU=0) (th _ k)0 (plohek plokgh) b1 ke N (11)

We define an integral operat®y, by

(Tz)(t) = /Kk(t,s)z(s)ds, te[0,b,k e N. (12)
0

Lemma 5. If K € C(Ay), thenT} (k € N) is compact as an operator from
L*>(0,b) to C[0,b] and to L>(0, b) too.
Proof. On the basis of (11) we obtain that, (¢, s) is continuous fob < s < ¢t and
|Kp(t,s)] < c(t—s)"%t,s €[0,b,s <t 0<a< 1 Now the assertions of
Lemma follow sincek (¢, s) is weakly singular as — ¢.

On the basis of Lemma 5 we obtain thatif € C(A;) and f € C[0, ], then
Eqg. (10) has a unique solutian, € C[0, b] for everyk € N.
Lemma 6. Assume that, € C™2[0,b], m € N,0 < a < 1, u,(t) = u(b'=*tF),
t €10,b], k € N. Thenuy, € C™"%[0,b], wherev, =1 — k(1 — «).
Proof. We observe thaty, € C[0,b] and ux(t) is m times continuously
differentiable for0 < ¢ < b. Using (2), we obtain by successive differentiation of
u(b'Ftk) that|ul) (1) < cth(=2)=3 j =1,... m, or, equivalentlylu,(j)(t)\ <c
if j < 1—uyy, and\uﬁj)(t)\ < et I if j > 1 — 1, where0 < t < b,
vp =1—k(1 —«)andj =1,...,m. Now the assertion of Lemma follows.

To find an approximate solution of Eq. (1), we use the following approach:
using (9), we first produce a transformed integral equation (10); weefind an

approximationv € Sf;_l{(ﬂgf;’b)) to ug, the solution of Eq. (10), determining
from the conditions

aﬁjl
v(z) = /Kk(xﬂ,s)v(s)ds + fi(zj), l=1,....m;j=1,...,N, (13)
0
where{z;;} are the nodes (5). After that we define an approximadtion to u, the
solution of Eq. (1), by setting

un k() = v((bk_lx)l/k) (x €0,b],v € S(_li(H%’b)), keN). (14)

m—

Theorem 7. Let K € C™(Ay), f € C™*[0,b], m € N,0 < a < 1, and assume

that the underlying grid sequenfé]\?b) satisfieq3). Then for all sufficiently large
N € N, sayN > Ny, and for every choice of parametd) andk € N, Egs.(13)
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and (14) determine a unique approximatiany . to the solutionu of Eg. (1) and
the following error estimate holds

sup |u(z) — uyk(z)| < ceg\r,n’yk’r) , N>Ng. (15)
z€[0,b]
Herec is a constant which is independentf v, = 1 — k(1 — a) ande'y""*" is

given by(6).

Proof. We write (10) in the formu, = Tyur + fi, with Ty, defined by (12).
As the homogenous equatian, = Tux has only the trivial solution;, = 0,
it follows from f;, € C[0,b] and Lemma 5 that the equation, = Truy, + fx
possesses a unique solutiop = (I — Tp) " 'fx € L>*(0,b). Herel is the
identity mapping andl —7,) ! € £L(L>(0,b), L*(0,b)). Further, the conditions
(13) have the operator equation representatios= PyTiv + Py fx, with Py
defined in Section 2. From Lemma 2 and from the boundednes of T},) !
in L>°(0,b) we obtain thatl — PyxT}, is invertible in L°>°(0, b) for all sufficiently
large N, N > Ny, and the norms ofI — PyxT},)~! are uniformly bounded in
N: (I = PNTR) Hleroeop),zo000)) < ¢ N > No. Thus, forN > No, the

equationv = PyTiv + Py f;, possesses a unique solutiore 55;}{(n%»b>>. We
have for it anduy, the solution of the equatiom, = Tpuy + fi, thatv — ug =
(I — PNT]C)71<PNU]€ — uk) Thereforeﬂuk — UHLOO(O,b) < CHPNuk — ukHLw(O,b)’
N > No. Applying Lemmas 1, 6, and 3, we obtain thaty — v|[z~@p) <

e\ N > Np. This, together withu (t) = u(b'~F¢%) and (14) yields the
estimate (15).

5. NUMERICAL RESULTS

We consider Eq. (1), whete = 1/2, K (x,y) = 1, f(z) = #'/?> — 7z/2, and
b = 1. Itis easy to check that in this casér) = z!/2 is the exact solution and
the assumptions of Theorem 7 abdttand f hold with « = 1/2 and arbitrary
m € N. This equation was solved numerically by method {(13),(14)}. Some of
the results obtained are presented in Table 1kfar N (see (9)),r € [1,00),
N € N (see 38))m = 2,12 = —n1 = 1/4/3 (see (4)). In order to calculate the
errorsupy<, <, [u(z) — un k()| = supge;<p [u(t*) — uni(t*)] (see (14), (15)),
we have takem = 7;; ., wherer;;, = x;_1 + I(x; — x;-1)/20,1 =0,1,...,20;
j=1...,N,withz; = z;, (j = 1,...,N), given by (3) forb = 1. In fact, in
Table 1 the error

5 — {max |u(r);,) — unp(Thy,)| 1 1=0,1,...,20;j =1,... N}

and the rati{®") = 51(5/’;)/51(5”") for different values of, r, andN are given.
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Table 1. Errorss """ and ratiogo'i"™ = 6](\’,6/’;)/61(\],”)

N 5%)1) 9%71) 5](\?71) Qgs’al) 55\?:4/3) 95374/3)

8 128 -1 1.6 55E—-3 29 | 23E-3 4.2
16 81E -2 15 20E-3 28 | 52E—4 4.3
32 5.6 —3 14 6.9E -3 2.8 1.2E -4 4.2
64 39E -3 14 2HE -4 238 30E-5 4.0

From Theorem 7 fow = 1/2 andm = 2 we can derive the following
convergence results. The rati () ought to be approximatelg*/2 ~ 1.4 for
{k=1,r =1},2%2? ~ 2.8for {k = 3,7 = 1} and 4 for{k = 3,r > 4/3}.
From Table 1 we can see that the numerical results are in good agreeitietitev
theoretical estimate (15).
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NOrgalt singulaarse Volterra integraalvorrandi
lahendamine muutujate vahetuse abil

Arvet Pedas ja Gennadi Vainikko

On vaadeldud lineaarse norgalt singulaarse tuumaga Volterra-tltpigateg
vorrandi kdrget jarku tdpsusega lahislahendite leidmist Uhtlase voegedHntlase
vorgu korral. Selleks teisendatakse vorrand kdigepealt sobiva mteitighetuse
abil kujule, mille lahend on lahtevdrrandi lahendist tunduvalt siledam. Ssejar
lahendatakse siledama lahendiga vérrand kollokatsioonimeetodiga Uhtlase vo
ndrgalt gradueeritud vérgu korral.
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