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Abstract. A globally convergent iterative algorithm for computing the spatial deformations of 
elastic beams without tensile strength is presented. The core of the algorithm is an iterative scheme 
(consistent with the classical Kirchhoff rod theory) for locating the neutral axis and thus for 
determining the curvature. We prove uniqueness and local stability for the general case and global 
stability for symmetric cross sections. The scheme is embedded in an iteration-free global boundary 
value problem solver (the so-called Parallel Hybrid Algorithm) to determine spatial equilibrium 
configurations. The obvious applications are steel reinforced concrete beams and columns, with or 
without pre-stressing. 

Key words: spatial deformations, steel reinforced concrete rod, asymmetric loading, Parallel 
Hybrid Algorithm, global convergence. 

1. INTRODUCTION

The literature on spatial deformations of elastic rods is rich and growing. 
These works are not only inspired by the engineering praxis [1–5], but concern 
also the mechanical modelling of the DNA [6,7] and other biological pheno-
mena [8,9]. Apparently no mathematically consistent, convergent algorithm is 
available for beams without tensile strength. Such beams, subjected to bending 
moments, crack on the tensile side, i.e., the shape of the actual cross section is 
determined by the acting forces and moments. The best known and most obvious 
examples are reinforced concrete beams which develop cracked zones already 
under service loads, i.e., in the elastic range. 

One key problem is finding the actual shape of the cross section, assuming 
that the acting forces and moments are determined. The literature on reinforced 
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concrete offers methods for achieving this goal [10]. These methods rely on 
general nonlinear solvers (e.g. the Newton–Raphson method), thus no informa-
tion is available on the global convergence features. In fact, one can find 
examples of divergent iterations [10]. In Section 2 we describe a direct recursion, 
which appears to be not only rather natural (is derived directly from the 
equilibrium equations and consistent with the classical Kirchhoff rod theory) but 
also globally convergent. We prove global uniqueness of the equilibrium solution 
and its local (super)stability. Global convergence can be proven for symmetric 
cross sections, however, we are convinced that a similar mechanism is governing 
the asymmetric, general case. For the latter, we ran systematic numerical trials 
and found the method in all (even extreme) cases to display robust and very fast 
convergence. 

Once the shape of the cross section (also that of the cracked zone) has been 
identified by the above mentioned iterative scheme, the curvatures are readily 
obtained and the shape of the beam as an initial value problem (IVP) can be 
found via simple forward integration. Already for the IVP solution it is essential 
that the cracked zone should be computed in a rapid and convergent manner, 
otherwise the integration is unduly delayed or even halted (in case of 
divergence). To identify equilibrium shapes, one has to solve a boundary value 
problem (BVP). We use the Parallel Hybrid Algorithm (PHA) [11,12] described in 
Section 3 for this purpose. The PHA is not a continuation code, i.e., it is capable 
of identifying disconnected equilibria as well. Such configurations can be 
relevant when the structure snaps from one configuration to another. One has to 
pay high computational toll for the detection of disconnected equilibria; this is 
partially compensated by the parallel features of the PHA. We embedded the 
iterative scheme into the PHA. Since the scheme showed fast, global 
convergence and the PHA does not include iterative steps, the combined method 
proved to be very robust. Section 4 summarizes our results. 

 
 

2. A  CONVERGENT  SCHEME  FOR  LOCATING   
THE  NEUTRAL  AXIS 

2.1. Description  of  the  scheme 
 
We consider a cross section of arbitrary shape, assuming that the acting forces 

and bending moments are determined. The section consists of two elastic 
components: the regions without tensile strength called “concrete” and the 
regions with a symmetrical material law called “reinforcement”. Locating the 
neutral axis is a highly nonlinear problem, since the unknown neutral axis is the 
boundary of the working (i.e. compressed) concrete area. In the literature general 
nonlinear solvers (such as Newton–Raphson and Quasi Newton methods), or 
FEM methods are used to determine the neutral axis. We propose a direct 
recursion based on equilibrium conditions. Our method can be associated with a 
two-dimensional map. 
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A compressive force F  is applied at the point P  (Fig. 1). Since the proposed 
method determines a physically objective quantity, namely the neutral axis, the 
iterative process does not depend on the applied coordinate system. To avoid 
coordinate transformations and to have a relatively simple form, we use a 
global [ ]XY  coordinate system, which is a freely chosen coordinate system 
having the origin at the point P.  The quantities measured in a global coordinate 
system are always denoted by capital letters. 

Let ( )f ε denote the stress–strain relation for the concrete and ( )g ε  be the 
stress–strain relation of the reinforcement. We assume 

 

( ) ( ),g nfε ε=                                                  (1) 
 

where n  is a positive constant. 

cA  and rfA  denote the areas of the actual concrete and the reinforcement, 
respectively. At each step of the iteration we calculate the neutral axis assuming 
(temporarily) that the concrete has tensile strength. The stress–strain relation for 
this case is denoted by ( ),f ε′  where ( ) ( )f fε ε′ =  if 0ε >  and ( ) ( )f fε ε′ = − −  
if 0ε <  (Fig. 2). After identifying the thi  estimate on the neutral axis inter-
secting X  and Y  at iX  and ,iY  respectively, the total area of reinforcement 

rfA  and the compressed concrete area cA  define the “active” part of the cross 
section, which is the input of the ( 1)sti +  step of the recursion. Accepting the 
hypothesis of plane cross sections, we can express the strains as 

 

cos( ) sin( ) ,x y tε α α= + −                                        (2) 
 

2 2
arctan( ), .

i i
i i

i i

X Y
Y X t

X Y
α = =

+
                           (3) 

 
 

 
 

Fig. 1. The applied signs. 
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Fig. 2. The stress–strain relations. 
 
 

The equations of equilibrium are the following: 
 

c rf

( )d ( )d ,
A A

f A g A Fε ε′ + =∫ ∫                                     (4) 

 

c rf

( )d ( )d 0,
A A

xf A xg Aε ε′ + =∫ ∫                                    (5) 

 

c rf

( )d ( )d 0.
A A

yf A yg Aε ε′ + =∫ ∫                                    (6) 

 

As long as 
 

( ) ,kf cε ε= ⋅                                                  (7) 
 

where c  and k  are positive constants, the location of the neutral axis does not 
depend on the absolute value of the load ,F  i.e., Eq. (4) is independent of 
(5), (6). In this case the general form of the recursion can be given as 

 
1 1

1 1

( , )
,

( , )

i i i

i i i

X F X Y

Y G X Y

− −

− −

   
=   

      
                                       (8) 

 
where ( , )F X Y  and ( , )G X Y  are derived from Eqs (5) and (6). If k  is an 
integer, the functions F  and G  can be given in a closed form. In case of linear 
elasticity ( ( ) ),f cε ε=  F  and G  can be expressed explicitly as 
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1 2 1 1

1 1 1 11 1

1 1 1 2 1 1

1 1 1 1

( )

( , )
,

( , ) ( )

i i i
xy x y

i i i ii i i
xy x x y

i i i i i i
xy y x

i i i i
xy y y x

D I I

D S I SX F X Y

Y G X Y D I I

D S I S

− − −

− − − −− −

− − − − −

− − − −

 −
 

−     
= =     

−        
 − 

                           (9) 

 

where ,xS  ,yS  ,xI  ,yI  xyD  are the first and second moments of the area of the 
actual cross section, respectively. 

The method starts with a first estimate on the neutral axis. The area of the 
reinforcement with the part of the concrete cross section bordered by the first 
estimation and containing the load is called the working cross section part. 
Equation (9) is solved by defining a new neutral axis. This line and the original 
cross section are the input of the next step of the iteration. We continue this 
recursion until the distances of two neutral axes in the following steps are smaller 
than an arbitrary small .δ  

In numerical simulations we found that the two-dimensional map given in 
Eq. (9) is globally convergent. Since a two-dimensional map is typically chaotic, 
the global convergence requires detailed investigation. 

 
2.2. Uniqueness  of  the  fixed  point 

 
We prove the uniqueness of solutions by the proof of contradiction: we 

assume there are two different stress distributions fulfilling the conditions of 
equilibrium; the corresponding neutral axes are denoted by 1n  and 2n  (Fig. 3). In 
this proof we do not assume linear stress–strain relation, i.e., the value of k  in 
Eq. (7) is arbitrary. The [ ]XY  global coordinate system is located so that the 

-axisX  contains the intersection point I  of lines 1n  and 2n  (having two parallel 
lines, the -axisX  is parallel with them, respectively). We denote the regions of 
the cross section shown in Fig. 3 by 1 4, , .A A…  (If the point I  is out of the 
convex boundary of the cross section, then 3A  or 4A  is an empty set.) The 
stresses at each point can be multiplied with a constant number; in this way the 
stress of the concrete at the point P  can be 1 unit. The stress bodies belonging to 
the neutral axes are the following: 

 

1 1 2 3

1 1 rf

1
1 if ( , )

1
1 if ( , ) ,

0 otherwise

k

k

X b Y X Y A A A
d

n X b Y X Y A
d

σ

  + + ∈ ∪ ∪  
  

 
  = + + ∈  

  
 
 
 

      (10) 

 



 101

2 1 2 4

2 2 rf

1
1 if ( , )

1
1 if ( , ) ,

0 otherwise

k

k

X b Y X Y A A A
d

n X b Y X Y A
d

σ

  + + ∈ ∪ ∪  
  

 
  = + + ∈  

  
 
 
 

      (11) 

 
where d  is the distance between points I  and P.  Without restricting generality, 
we can assume that 1 2 ,b b>  leading to 1 2( ) 0σ σ− ≥  for 0.Y ≥  We introduce a 
new stress body: 
 

1 1

2 2

1 rf

1
1 if ( , )

1
1 if ( , ) .

1
1 if ( , )

0 otherwise

k

k

X b Y X Y A
d

X b Y X Y A
d

n X b Y X Y A
d

σ ∗

  + + ∈  
  

 
   + + ∈ =   

 
  + + ∈   

 
 

            (12) 

 
 
 

 
 

Fig. 3. The areas and notations distinguished in the text. 
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The bending moment of the stress body σ ∗  around the -axisX  is denoted by 

0.M  The bending moments of 1σ  and 2σ  around the -axisX  are denoted by 1M  
and 2.M  Since 1M  and 2M  must be zero, we obtain: 

 

2 3

1 1 0 1 0 1d ( ) d ( ) d 0,
A A A A

M y A M y A M y Aσ σ σ σ σ∗ ∗

∪

= = + − = + − =∫ ∫ ∫      (13) 

 

1 4 rf

2 2 0 2

0 2 2

d ( ) d

( ) d ( ) d 0.

A A

A A A

M y A M y A

M y A y A

σ σ σ

σ σ σ σ

∗

∗ ∗

∪

= = + − =

+ − + − =

∫ ∫

∫ ∫
        (14) 

 

In the region 2 3 1( ) 0A A σ σ ∗∪ − ≥  and 0Y ≥  the resulting 0M  must be 
negative. In the region 1 4 2( ) 0A A σ σ ∗∪ − ≥  and 0,Y ≤  for the reinforcement 

2( ) 0σ σ ∗− ≥  for 0Y ≤  and 2( ) 0σ σ ∗− ≤  for 0Y ≥  the resulting 0M  must be a 
positive value. Consequently, Eqs (13) and (14) cannot be fulfilled for the same 
cross section. We reached a contradiction; the original assumption was false: 
there is only one neutral axis fulfilling the conditions of equilibrium. According 
to this proof, the 2D map has only one fixed point. In the next part we focus on 
the stability of this fixed point. 

 
2.3. Local  stability 

 
The stability of the 0 0( , )X Y  fixed point of the map given in Eq. (9) can be 

investigated by the 1 0 0( , )X Yλ  and 2 0 0( , )X Yλ  eigenvalues of the 0 0( , )L X Y  
matrix of stability, where 

0 0

0 0

,

( , ) .

X X Y Y

F F

X YL X Y
G G

X Y = =

∂ ∂ 
 ∂ ∂=  

∂ ∂ 
 ∂ ∂ 

                         (15) 

 

If 
 

1 0 0 2 0 0( , ) ( , ) 1,X Y X Yλ λ≤ <                                  (16) 
 

then the fixed point is an attractor. We will show a coordinate system, where 
 

0 0 0 0

0 0 0 0

0.
X X X X X X X X
Y Y Y Y Y Y Y Y

F G F G

X X Y Y= = = =
= = = =

∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

                    (17) 

 

Consequently, 
 

1 2 0,λ λ= =                                                 (18) 
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as long as the map is differentiable. Since we compare the first and second 
moments of the area of arbitrary small regions, we neglect the reinforcement. We 
use the [ ]XY  global coordinate system, where 0.xyD =  The intersections of the 
neutral axis belonging to the fixed point with the convex boundary of the cross 
section are denoted by A  and B  (Fig. 4). Without restricting generality we can 
assume that A B.≠  For an asymmetric cross section and loading the line AB  is 
typically not parallel with the axes of the [ ]XY  coordinate system. If they were 
parallel, the equations used in the proof would become more sophisticated, but 
the statement for the 1 0 0( , )X Yλ  and 2 0 0( , )X Yλ  eigenvalues would remain true. 
In this paper we give the proof for the typical case. 

For the fixed point in the chosen global coordinate system the following is 
valid: 

,0

,00

0 ,0

,0

.

Y

Y

X

X

I

SX

Y I

S

 
 

   =      
  

                                           (19) 

 

The neutral axis can be given with 
 

0
0

0

.
Y

Y Y X
X

= −                                              (20) 

 
 

 
 

Fig. 4. Notations for the proof of stability. 
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A line, denoted by ,e  is arbitrary close to the neutral axis: 
 

0 0
0 0

0 0

d
d .

d

Y Y
Y Y Y X

X X

+
= + −

+
                                    (21) 

 

The region of the cross section between the neutral axis and line e  is denoted by 
.A∆  We introduce the following sign: 

 
0 0

0 0
0 0 0

00
0

0

d
d

ddef

(.)d (.)d d .

Y Y
Y Y Y X

X X X X

YA X X Y Y X
X

A y x
β

α

+= + −
= +

∆ = = −

=∫ ∫ ∫                         (22) 

 
(The area calculated according to Eq. (22) differs from the area shaded in Fig. 4 
only in the second terms.) By applying Eq. (22) the first and second moments of 
the area belonging to the line e  can be given as follows: 

 

,0

0

d ,X
X

A

I
S Y A

Y ∆

= + ∫                                           (23) 

 

,0

0

d ,Y
Y

A

I
S X A

X ∆

= + ∫                                           (24) 

 

2
,0 d ,X X

A

I I Y A
∆

= + ∫                                         (25) 

 

2
,0 d ,Y Y

A

I I X A
∆

= + ∫                                         (26) 

 

d .XY
A

D XY A
∆

= ∫                                            (27) 

 

Substituting these values into Eq. (9) and differentiating it by the computer 
program MAPLE, we gain the following results on the partial derivatives: 

 

0 0 0 0

0 0 0 0

d 0 d 0 d 0 d 00 0 0 0
d 0 d 0 d 0 d 0

0.
d d d dX X X X

Y Y Y Y

F F G G

X Y X Y= = = =
= = = =

∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

              (28) 

 
The partial derivatives are independent of α  and .β  This enables us to extend 
the proof for concave cross sections, where the line AB  contains points not 
belonging to the cross section. In this case A∆  contains more, detached areas, 
bordered by 1 0Xα ⋅  and 1 0 ,Xβ ⋅  2 0Xα ⋅  and 2 0 ,Xβ ⋅  ,…  etc. Equations (23)–
(27) must be modified according to these conditions. After the substitutions and 
partial derivations we gain the results of Eq. (28). We find that all of the elements 
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and the eigenvalues of the matrix of stability are zero, the fixed point is 
(super)stable. 

 
2.4. Partial  results  on  global  stability 

 
In numerical simulations we found that the map given in Eq. (9) was globally 

convergent. We give a proof for global convergence for symmetric cross sections 
under compression and uniaxial bending. This case can be associated with a 1D 
map provided the first estimation on the neutral axis is perpendicular to the axis of 
symmetry. Although we were unable to extend this proof for the general two-
dimensional case, we are convinced that a similar mechanism governs the iteration. 

A load is applied to the axis of symmetry of the cross section at the point P.  
We assume that the point P  is outside the kernel of the cross section, but is 
inside its convex boundary. (If it is inside the kernel, we have a neutral axis out 
of the cross section; for this case we have to solve the equilibrium equations only 
once.) The -axisX  of the global coordinate system is at the axis of symmetry; its 
direction is given in such a way that the X  coordinate of the C  centroid is 
positive. Due to the symmetry the estimations on the neutral axis and the final 
solution are parallel to each other. The iteration can be given as 

 

1
1

1
( ) .

i
yi i
i
y

I
X f X

S

−
−

−= =                                        (29) 

 

We will investigate the convergence properties of the map given in Eq. (29). 
At each step of the iteration the cross section is cut into a maximum of two parts 
by the current estimation on the neutral axis. We solve Eq. (29) for the working 
cross section part, i.e., the part containing the point P.  Due to our assumptions 
there must be an estimation, where the yS  statical moment of the working cross 
section part is zero. This estimation is denoted by 2.e  If the estimation for the 
neutral axis is between the -axisY  and 2 ,e  yS  is negative, otherwise it is 
positive. yI  is a positive number for any estimation. It means that ( )f X  has a 
singularity at 2.X e=  Due to the rule that the working cross section part always 
contains the point P,  there is another singularity at 0.X =  Except the two 
singularities, ( )f X  is continuous. Summing up, we have the following 
statements for the sign of ( ):f X  

 

( ) 0f X >  if 0X <  or 2 ,X e>                        (30) 
 

( ) 0f X <  if 20 ,X e< <                            (31) 
 

2

lim ( ) ,
X e

f X
−→

= −∞                                            (32) 

 

2

lim ( ) .
X e

f X
+→

= +∞                                            (33) 
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To determine the shape of ( ),f X  we investigate the first derivative by assuming 
there is a limit point, where 
 

( d ) ( ).f X X f X+ =                                         (34) 
 
The last equation can be written as 
 

2d ( d 2)
,

d ( d 2)
y y

y y

I X h X X I

S X h X X S

+ ⋅ ⋅ +
=

+ ⋅ ⋅ +
                             (35) 

 
where h  is the height of the arbitrary narrow slice according to Fig. 5. Neglect-
ing the higher terms in dX  and solving Eq. (35), we obtain that the first 
derivative can be zero if and only if 
 

.y

y

I
X

S
=                                                   (36) 

 
By the proof of the uniqueness of solutions there must be one point where 

( );X f X=  this point is denoted by 0.X  Equations (30) and (31) ensure that 

0 2 ,X e>  by Eq. (36) at this point ( ) 0.f X′ =  Making an inequality from 
Eqs (35) and (36), we can state 
1) for 0yS >  

if ( ) ,f X X<  then ( )f X  increases monotonously, 
if ( ) ,f X X>  then ( )f X  decreases monotonously; 

2) for 0yS <  
if ( ) ,f X X<  then ( )f X  decreases monotonously, 
if ( ) ,f X X>  then ( )f X  increases monotonously. 
 

 
 

 
 

Fig. 5. A symmetric cross section. 
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These statements ensure that there cannot be more limit points than 0.X  To 
show the shape of ( ),f X  we take the 1e  and 3e  borders of the cross section into 
account. The function ( )f X  can be written as follows: 

 

1[ , ]X e∈ −∞  0( ) ,f X c=                                    (37) 
 

1( , 0]X e∈  0 ( d ) ( ),f X X f X< + <                           (38) 
 

2(0, ]X e∈  ( d ) ( ) 0,f X X f X+ < <                           (39) 
 

2 0( , ]X e X∈  0 ( d ) ( ),f X X f X< + <                           (40) 
 

0 3( , ]X X e∈  0 ( d ) ( ),f X X f X< + <                          (41) 
 

3( , ]X e∈ + ∞  0( ) ,f X c=                                     (42) 
 

where 0c  is a positive constant. The shape of ( )f X  is given in Fig. 6. The only 
fixed point is at 0.X  Since ( )f X  rises monotonously in 0 3( , ]X e  and is constant 
for 3 ,X e>  the iteration started at 0X X>  definitely converges to a fixed point 
and cannot produce 0.X X<  One can show that the iteration started elsewhere 
gets into this convergent region in a finite number of iterative steps, but detailed 
proof is omitted in this paper. 

For the general, two-dimensional map we carried out systematic search for a 
counterexample, but were unable to find any. The map was globally convergent 
even for very extreme cases. 

 
 
 

 
 

Fig. 6. The f(X) function. 
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3. CALCULATION  OF  SPATIAL  DEFORMATIONS  USING   
THE  ITERATIVE  SCHEME 

 
In our calculations we use the third-order theory, i.e., full geometric non-

linearity. The described iterative scheme is used to locate the neutral axis in each 
cross section. Subsequently the curvature is integrated along the beam axis from 

0s =  to .s L=  This integrator can be viewed as a set of algebraic functions .if  
The variables jv  are the nonconstant boundary conditions at 0,s =  the function 
values are the prescribed conditions at .s L=  As a simple example, let us con-
sider a homogeneous, linearly elastic cantilever, loaded by the compressive force 
F  (Fig. 7). In this example we have three variables, F  and the initial bending 
moments (0)XM  and (0).YM  The far-end values ( )XM L  and ( )YM L  can be 
viewed as functions 1( ,f F  (0),XM  (0))YM  and 2 ( ,f F  (0),XM  (0))YM  
assuming that an integrator is available. Now we seek the solutions of 1 2 0.f f= =  
In general, we have n  functions and 1n +  variables; the latter define the Global 
Representation Space (GRS) of the problem. A fast and efficient parallel 
algorithm, the PHA is presented in [11] for solving such a system of equations. 

 
 

 
 

200 cmL =  
Concrete: C20  

ck 20 MPa,f =  

cd 13.3 MPa,f =  
c,m 30 GPa,E =  

     1.53ϕ =  
Reinforcement: B500  

yk 500 MPaf =  
yd 435 MPaf =  

     s 200 GPaE =                                       
 

 
Fig. 7. An axially loaded cantilever beam with its cross section. Abbreviations: fcd, design value of 
the compression strength of the concrete; fck, characteristic value of the compression strength of the 
concrete; fyk, characteristic value of the yield stress of the reinforcement; fyd, design value of the 
yield stress of the reinforcement; φ, the creep coefficient; Ec,m, the mean value of the elastic 
modulus for the concrete; Es, the elastic modulus for the reinforcement. 
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The PHA computation starts with the discretization of the GRS by choosing a 
simplicial grid. In a two-dimensional case this simplicial grid contains triangles. 
The function if  is evaluated at the meshpoints and linearly interpolated in the 
simplectic domains. Since the calculation of two simplexes is independent, the 
computation can be carried out in a parallel environment. 

The simplex algorithm was implemented under the Parallel Virtual Machine 
(PVM). A great advantage of the simplex method is that only the finite-
dimensional GRS points of the bifurcation diagram are stored, not the final shape 
of the bar. The latter can be easily computed by integration for a selected point of 
the bifurcation diagram. Figure 8 shows the bifurcation diagram belonging to the 
cantilever beam. 

In this article we emphasize the theoretical background of the proposed 
method. The material properties of steel reinforced concrete can be taken into 
account according to the EC2 standard. These modifications do not influence the 
convergence properties of the recursion and the robustness of the PHA. By these 
extensions the method is capable of calculating deformations of columns under 
compression and biaxial bending or the deflections of prestressed beams in the 
Serviceability Limit States. It can be used for designing cross sections of 
columns joint together in a frame structure in the Ultimate Limit States taking the 
effective stiffness of the bar into account. 

 
 
 

 
 
Fig. 8. The bifurcation diagram belonging to the cantilever beam in Fig. 7. 1, the trivial solution; 
2, the first buckling mode in the weaker direction (a stable bifurcation not influenced by the limited 
tensile strength); 3, the decreasing part of the same branch due to the cracking; 4, the first buckling 
mode in the stronger direction; 5, the decreasing part of the same branch. 
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4. SUMMARY 
 
In this paper a method is presented for calculating spatial deformations of 

reinforced concrete bars. The core of the algorithm is a globally convergent 
recursion, which determines the neutral axis of an arbitrary reinforced concrete 
cross section. The proof for the uniqueness of solutions, the stability of the only 
fixed point, and the global convergence for symmetric cross sections are given. 
The recursion can be used in the PHA, which is an efficient solver of boundary 
value problems. A cantilever beam under axial compression is presented as an 
example. 
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Tõmbetugevuseta  materjalist  varraste  ruumiliste  
deformatsioonide  arvutamise  robustne  algoritm 

 
András A. Sipos 

 
On esitatud globaalselt koonduv iteratiivne algoritm elastsete tõmbetugevu-

seta materjalist talade ruumiliste deformatsioonide arvutamiseks. Algoritmi 
tuumaks on iteratiivne skeem neutraaltelje asukoha ja seega ka varda kõveruse 
määramiseks (lähtudes Kirchhoffi klassikalisest vardateooriast). Üldjuhu jaoks 
on tõestatud tulemuse ühesus ja lokaalne stabiilsus, sümmeetriliste ristlõigete 
jaoks on tõestatud globaalne stabiilsus. Skeem on sisestatud iteratsioonivabasse 
globaalse ääreväärtuse ülesande lahendajasse (nn paralleelne hübriidalgoritm), 
määramaks ruumilist tasakaalukuju. Ilmseks rakenduseks on eelpingestatud või 
eelpingestamata raudbetoontalade ja -postide arvutamine. 

 


