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Abstract. We study some properties of a multiresolution-like algorithm for piecewise con-
formal mapping, based on partitioning the complex plane into convex polygons and using
appropriate window functions for these polygons. Some estimates for the nonconformity of
the mapping are presented.
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1. INTRODUCTION

The motivation for this study is the following situation. We have a geodetic
control network where the same physical control points have different coordinates
at different moments of time. This situation happens frequently when control
networks are reconfigured (new points added, old ones removed, and some points
remeasured) and the resulting new configuration is readjusted. We have some maps
in the framework of one set of coordinates and we have to transform them to the
framework of the new set.

In this context it is quite natural to wish that the mapping should be conformal
or nearly conformal, reasonably simple, and easy to implement.

This problem without the conformity requirement has been discussed by many
authors (see, e.g., [1] or [2]). The key property of this approach has been identifying
common features in two sets of maps and defining the mapping in such a way
that these features are preserved. Conformal mappings have been considered only
on global level (see, e.g., [3], also [4]). This is mainly due to the fact that as
soon as we require conformity, we are extremely restricted in our choice of tools.
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Namely, when two conformal mappings coincide on an infinite number of points,
like on a segment of an arc or on an arbitrary small neighbourhood of a point, they
necessarily coincide on the entire domain.

In [5] we presented an algorithm of piecewise conformal mapping. We called
it multiresolution-like, meaning that we have different levels of partitioning the
domain of the mapping into polygons, each level adding more detail, and the
mapping is conformal on each of the polygons. These conformal pieces are glued
together in a continuous or smooth manner using appropriate window functions.

In the present paper we consider an indicator of the nonconformity of a
mapping and present some estimates for it, based on our algorithm.

2. PRELIMINARIES

Let <(z) and =(z) denote respectively the real and the imaginary part of
a complex numberz. Let z̄ denote the complex conjugate of the numberz,
z̄ = <(z) − i=(z).

The general purpose is to find a conformal, or nearly conformal, mappingfrom
one planar region into another. Therefore it is natural to consider the problem in
the framework of analytic functions in the complex domain. We may identify the
pointsP = (x, y) ∈ R

2 with complex numbersz = x + iy and formulate our
problem in the following way.

Given two sets of pointsP = {zi}
N
i=1 ⊂ C andQ = {wi}

N
i=1 ⊂ C, find a

sufficiently simple functionf that minimizes the differencewi − f(zi) in the least
squares sense.

Under the termsufficiently simplewe mean: preferably low degree poly-
nomials.

3. CONVEX POLYGONS AND PARTITIONS

Let s1 and s2 be two complex numbers and|s1| = 1. Let s denote the
straight line in the complex plane passing through the points2 and having the unit
normals1:

s =
{

z ∈ C : <(s1(z − s2)) = 0
}

.

Let us denote
ds(z) = <(s1(z − s2)),

and consider the two closed half planesC
+(s) = {z ∈ C : ds(z) ≥ 0} and the

complementary planeC−(s). The unit normals1 of the common lines is oriented
towards the positive half planeC+(s).

Let z0 be a complex number and letσ =
{

s1, s2, . . . , sn
}

be a set of straight
lines such thatz0 is an interior point ofC−(si) for everysi ∈ σ. A convex polygon
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D = Dσ, corresponding to the set of linesσ and containing the pointz0, is the
intersection of all these half planes.

Let ε > 0 be a real number. We may also define the (open)ε-neighbourhood of
the polygonDσ as

Uε(Dσ) = {z : ds(z) < ε,∀s ∈ σ}

and the (open)ε-interior of the polygonDσ as

Vε(Dσ) = {z : ds(z) < −ε, ∀s ∈ σ} .

The border of a convex polygon consists of a finite number of straight line
segments and in view of the present definition, the normals of these segments are
oriented outwards.

Given a lines, consider both the positive and the negative half planes relative
to s. It is obvious that the labelling of the planes as positive and negative depends
only on the orientation of the normal of the line and every half plane is once
negative, once positive.

A set of linesσ =
{

s1, s2, . . . , sn
}

defines a partition∆(σ) of the complex
plane into a set of closed convex polygons. Any two polygons from this partition
share at most a straight line segment as their common border.

If σ1 ⊆ σ2, then we say that two partitions∆(σ1) and∆(σ2) arenestedand
that∆(σ2) is a finer partition than∆(σ1).

4. WINDOW FUNCTIONS ASSOCIATED WITH CONVEX POLYGONS

A Steklov function, also known as a gliding mean, with the steph > 0 of an
integrable functionf of one real variable, is defined as

fh(x) =
1

2h

∫ h

−h

f(x+ t)dt

(see, e.g., [6], Ch. III.74).
Consider the following function of one real variable

Θ−(t) =











1 if t < 0,
1
2 if t = 0,

0 if t > 0.

This is essentially the characteristic function of the negative half line, but thevalue
at0 is defined, so that the resulting function is symmetric relative to the point(0, 1

2).
The functionΘ−(t) is discontinuous; it has a jump at zero. Leth > 0 be a fixed

real number and consider the Steklov functionΘ1,h
− (t) of Θ−(t). Repeating the
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operation of taking Steklov functions, we may obtain functionsΘk,h
− (t) of arbitrary

finite smoothnessk. These functions are continuous, symmetric relative to the point
(0, 1

2), and each function together with its+ complement forms a partition of unity

1 = Θk,h
− (t) + Θk,h

+ (t).

Let σ =
{

s1, s2, . . . , sn
}

be a set of straight lines and consider a convex
polygonD = Dσ. Leth be a positive real number,h > 0.

Let us define thek smooth window function associated with the polygonD:

χk,h
D (z) =

∏

s∈σ

Θk,h
− (ds(z)). (1)

5. APPROXIMATION SCHEME

Let P = {zi}
N
i=1 ⊂ C andQ = {wi}

N
i=1 ⊂ C be two sets of points in the

complex plane. Letσ1 ⊂ σ2 ⊂ . . . ⊂ σK be sets of straight lines and{∆(σk)}
K
k=1

the corresponding sequence of nested partitions, such that every pairof elements
from this sequence gives a different partition of the setP into subsets.

We keep adding straight lines to the set defining the partition, so that each line
added further subdivides the setP. The number of different partitionsK therefore
does not exceed the number of pointsN . By σ0 we denote the partition with no
dividing lines, that is the whole complex plane.

Let k andh be fixed (k ∈ N andh > 0) and consider the approximating
function in the following form:

f(z) = f0(z) + f1(z) + . . .+ fK(z).

Here
fl(z) =

∑

D∈∆(σl)

χk,h
D (z)pD(z) (2)

is the term corresponding to the partition∆(σl) of the complex plane and the
functionpD(z) is a sufficiently simple function, analytic in thekh-neighbourhood
of the polygonD, which in some sense minimizes the difference

rl−1,i − pD(zi), zi ∈ D,

where
rl−1,i = wi − f0(zi) − . . .− fl−1(zi)

are the residuals from the previous level of approximation.
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6. ESTIMATES OF NONCONFORMITY

The mappingfl defined in such a manner is conformal inside thekh-interior of
the polygons of∆(σl), since the window function in this region is equal to 1. The
regions of the nonconformity of the mapping are the strips with the width of2kh
along the lines defining the partition. In the present section we try to give some
estimates for the degree of the nonconformity of the mapping.

We may write theR-differential of a functionf of a complex variable (that is
the differential of the functionf(z) = f(x + iy) considered as a function of two
real variablesx andy) in the following way:

df(w) =
df

dz
w +

df

dz̄
w̄,

where
df

dz
=

1

2

(

∂f

∂x
− i

∂f

∂y

)

,
df

dz̄
=

1

2

(

∂f

∂x
+ i

∂f

∂y

)

,

provided all the partial derivatives exist.
In view of the Cauchy–Riemann equations we may say that a necessary and

sufficient condition for thef to be analytic is that

df

dz̄
= 0.

Therefore the function

I(f, z) =

∣

∣

∣

∣

df(z)

dz̄

∣

∣

∣

∣

gives us a simple indicator of the nonconformity of the mappingf at the pointz,
where the partial derivatives exist. In the remaining points we may setI(f, z) = ∞,
meaning that in these points the degree of nonconformity is infinite.

Let us introduce the following notation. Letσj = σ \
{

sj
}

. LetDj andD′
j

denote a pair of complementary polygons relative to the linesj ,

Dj = Dj,σ = C
−(sj) ∩

⋂

s∈σj

C
−(s),

D′
j = D′

j,σ = C
+(sj) ∩

⋂

s∈σj

C
−(s).

Using this notation, we obtain the following estimate for the functionI.

Theorem 1. Let k andh be fixed as in the previous section. Letfl be defined by
(2) and letσ = σl. Let all the functionspD be analytic in thekh-neighbourhood of
the respective polygonsD. Then

I(fl, z) ≤
l
∑

j=1

∣

∣

∣

∣

∣

dΘk,h
− (ds(z))

dz̄

∣

∣

∣

∣

∣

∑

Dj∈∆(σj)

χk,h

Dj∪D′

j
(z)|pDj

(z) − pD′

j
(z)| (3)

at all pointsz, where the necessary partial derivatives exist.
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The last stipulation excludes the points on the linessj whenk = 0, and on the
lines parallel to the linessj and in the distanceh of them in the casek = 1.

Proof. We may write

df

dz̄
=
∑

D

(

dχk,h
D (z)

dz̄
pD(z) + χk,h

D (z)
dpD(z)

dz̄

)

.

Since allpD are analytic inside thekh-neighbourhoods of the respective polygons,
and outside them the window functions are zero, we see that the second terms in
the brackets all vanish.

Letψ(s, z) = Θk,h
− (ds(z)). Then we have

df

dz̄
=
∑

D





∑

j

dψ(sj , z)

dz̄

∏

m6=j

ψ(sm, z)



 pD(z). (4)

Observe that for every linesj this sum together with every polygonDj also
contains a term corresponding to its complementary polygonD′

j , and that the
window functions for the corresponding half planes satisfy (1). This means that
the derivatives of these functions are equal with opposite signs. Also observe that
the big product is the window function corresponding to the union of polygonsDj

andD′
j

∏

m6=j

ψ(sm, z) = χk,h

Dj∪D′

j
(z).

Hence, rearranging the terms in (4), we obtain

df

dz̄
=
∑

j

dψ(sj , z)

dz̄

∑

Dj∈∆(σj)

χk,h

Dj∪D′

j
(z)(pDj

(z) − pD′

j
(z)). (5)

Taking the modulus of (5) and using the fact that the values of window functions
are positive real numbers, we get the proof of the theorem.

The crowdedness of notation in Theorem 1 somewhat shadows the actual
simplicity of the concept. At every pointz most of the terms in (3) are equal to
zero. Let us illustrate it with some important special cases.

First observe that the derivativedΘk,h
− (ds(z))/dz̄ is different from zero only on

the strips of the width2kh centred on the partitioning lines. This, combined with
the window functions, gives us that in thekh-interior of every polygon we have
I(fl, z) = 0, as expected.

Next suppose we have a pointz0 that lies near the linesm, but farther thankh
from all other linessj . In that case only one term in the outer sum and one term in
the inner sum are different from zero, hence we obtain

I(fl, z) ≤

∣

∣

∣

∣

∣

dΘk,h
− (dm(z))

dz̄

∣

∣

∣

∣

∣

|pDm
(z) − pD′

m
(z)|.
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From the construction of the window functions we can deduce that
∣

∣

∣

∣

∣

dΘk,h
− (dm(z))

dz̄

∣

∣

∣

∣

∣

≤
1

2h
,

and finally conclude that in this case we have

I(fl, z) ≤
1

2h
|pDm

(z) − pD′

m
(z)|.
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Tükiti konformse kujutamise mõningatest omadustest
Jüri Lippus

Artiklis on vaadeldud multiresolutsiooni-taolist algoritmi tükiti konformseks
kujutamiseks. Algoritm põhineb komplekstasandi tükeldamisel kumerateks polü-
goonideks ning nende polügoonide jaoks sobivate aknafunktsioonide kasutamisel.
Artiklis on antud ka mõned hinnangud saadud kujutuste mittekonformsuse kohta.
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