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Abstract. We consider ill-posed problemsAu = f , where the operatorA ∈ L(H,H),
A = A∗ ≥ 0, has a nonclosed range in the Hilbert spaceH . We assume that instead off
noisy dataf̃ are given, with the approximately known noise levelδ. The problemAu = f is
regularized by the (iterated) Lavrentiev method, by iterative methods or by the method of the
Cauchy problem. For the choice of the regularization parameter we propose a newa posteriori
rule with the property that the regularized solution converges to the exact one in the process
δ → 0 provided that the ratio‖f̃ − f‖/δ is bounded forδ → 0. The error estimates are given.
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1. INTRODUCTION

We consider an operator equation

Au = f , f ∈ R(A), (1)

with the linear continuous self-adjoint and non-negative operatorA ∈ L(H, H),
A = A∗ ≥ 0, andu andf being elements of the real Hilbert spaceH. We do not
suppose that the rangeR(A) is closed and so in general our problem is ill-posed.
The kernelN(A) may be nontrivial. We suppose that instead of the exact right-
hand sidef we have an approximatioñf ∈ H with the supposable noise levelδ,
but it is unknown whether the inequality‖f̃ − f‖ ≤ δ holds or not.

For a stable numerical approximation of the solution of (1) some regularization
technique is needed. Here we consider the following regularization methods.
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1. The Lavrentiev methoduα = (αI + A)−1(αu0 + f̃).

2. The iterated Lavrentiev method. Letu0 = u0,α ∈ H be the initial
approximation, finduk,α = (αI + A)−1(αuk−1,α + f̃) for k = 1, . . . , m,
and takeuα = um,α.

3. The explicit iteration scheme (Landweber’s method)

un = un−1 − µ(Aun−1 − f) , n = 1, 2, . . . (0 < µ < 1/‖A‖) .

4. The implicit iteration schemeαun + Aun = αun−1 + f̃ , n = 1, 2, . . .
(α = const > 0).

5. The method of the Cauchy problem. We take forur the solution of the
Cauchy problem

u′(r) + Au(r) = f̃ , u(0) = u0 .

All these methods can be presented in the general form (see [1,2])

ur = (I − Agr(A))u0 + gr(A)f̃ , (2)

whereur is the approximate solution,u0 – initial approximation,r – regularization
parameter (in methods 1 and 2,r = 1/α; in methods 3 and 4,r = n), I – identity
operator, and the functiongr(λ) satisfies the conditions (3) and (4):

sup
0≤λ≤a

∣

∣gr(λ)
∣

∣ ≤ γr , r ≥ 0 , (3)

sup
0≤λ≤a

λp
∣

∣1 − λgr(λ)
∣

∣ ≤ γpr
−p , r ≥ 0 , 0 ≤ p ≤ p0 . (4)

Herep0, γ, andγp are positive constants,γ0 ≤ 1, a ≥ ‖A‖ and the greatest value
of p0, for which the inequality (4) holds, is called the qualification of the method.
For methods 1–5 the corresponding generating functions are

gr(λ) =
r

1 + rλ
, gr(λ) =

1

λ

(

1 −
( 1

1 + rλ

)m)

,

gr(λ) =
1

λ

(

1−(1−µλ)r
)

, gr(λ) =
1

λ

(

1−
( α

α + λ

)r)

, gr(λ) =
1

λ

(

1−e−rλ
)

.

The qualifications of methods 1 and 2 arep0 = 1 andp0 = m, respectively; in
methods 3–5,p0 = ∞.
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2. KNOWN RULES FOR THE CHOICE OF THE REGULARIZATION
PARAMETER

By using the regularization method (2) with noisy data an important problem
is the choice of an appropriate regularization parameterr. For the choice of the
parameterr two types of rules can be found in literature. Rules of the first type use
information about the noise level of datãf , rules of the second type do not use such
information. Below, we consider two rules ofthe first group.

1. Morozov’s discrepancy principle [3]. In this rule the regularization parameter
r = rD is chosen as the solution of the equation

∥

∥Aur − f̃
∥

∥ ≈ bδ with b = const > 1 .

2. Modification of the discrepancy principle [4]. In this rule the regularization
parameterr = rMD is chosen as the solution of the equation

∥

∥Br

(

Aur − f̃
)∥

∥ ≈ bδ with b = const > 1 ,

where the operatorBr = I for p0 = ∞, Br = (I − Agr(A))1/p0 for
p0 6= ∞. Note that for the Lavrentiev method and its iterative variant
‖Br(Auα,m − f̃)‖ = ‖Auα,m+1 − f̃‖.

Some useful properties of the modified discrepancy principle are (see [4])

1. convergence:‖urMD
− u∗‖ → 0 for δ → 0; hereu∗ is nearest tou0 solution

of the problemAu = f ;

2. order-optimality: ifu0 − u∗ = Apv, v ∈ H, ‖v‖ ≤ %, p > 0, then
‖urMD

− u∗‖ ≤ Cp%
1/(p+1)δp/(p+1), 0 < p ≤ p0;

3. quasioptimality: there exists a constantc such that

‖urMD
− u∗‖ ≤ c inf

r≥0
{‖(I − Agr(A))(u0 − u∗)‖ + γrδ} .

However, the discrepancy principle and its modification have an essential
disadvantage. Namely, these choices are unstable in the sense that if the actual
error of the right-hand side is larger thanbδ, the error of the approximate solution
may be arbitrarily large independently of the value of the ratio of the actual to the
supposed noise level.

The parameter choice rules ofthe second groupare sometimes called heuristic
or delta-free choices. The first rule of this kind was the quasioptimality criterion [5],
in which such a parameter is chosen for which the functionk(r) = r‖Br(Aur−f̃)‖
has the minimum. Other popular delta-free rules are Wahba’s cross-validation
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rule [6] and Hansen’sL-curve rule [7]. Some heuristic rules are also proposed
in [8].

Although these rules often work well, it was shown by Bakushinskii [9] that
the convergence of the approximate solution for heuristic parameter choicerules
cannot be proved.

3. PARAMETER CHOICE RULE IN THE CASE OF THE
APPROXIMATELY GIVEN NOISE LEVEL OF DATA

In practice it may be complicated to find the exact noise level, but we often
have a rough guess at it. In the following we assume that the supposed error level
δ > 0 is given, but we do not know exactly if‖f̃ − f‖ ≤ δ holds or not. Our aim is
to present a rule for the stable parameter choice which guarantees the convergence
of the approximate solution to the exact solution if only the ratio‖f̃ − f‖/δ is
bounded in the processδ → 0, and to give some error estimates of the approximate
solution.

In the following the function

ϕ(r) =
√

r
∥

∥A1/2B3/2
r

(

Aur − f̃
)∥

∥ =
√

r
〈

Br

(

Aur − f̃
)

, AB2
r

(

Aur − f̃
)〉1/2

plays an important role.
Note that for the Lavrentiev method and its iterative variantBr = (I + rA)−1

and ϕ(r) = ϕ(α−1) = 1√
α
〈Aum+1,α − f̃ , A(Aum+2,α − f̃)〉1/2; for iterative

methodsϕ(r) = ϕ(n) =
√

n〈Aun − f̃ , Aun − f̃〉1/2.

Rule P.Let 0 ≤ s ≤ 1 andb1, b2 be the constants such thatb2 ≥ b1 > Cm, where
Cm = 1/2, Cm = 1/

√
2m + 3, Cm = 1/

√
2µe, Cm =

√

α/2, andCm = 1/
√

2e
for methods 1–5, respectively. Ifϕ(1) ≤ b2δ, chooser(δ) = 1. In the opposite
case we find at firstr2(δ) > 1 such that

ϕ(r2(δ)) ≤ b2δ , (5)

ϕ(r) ≥ b1δ ∀ r ∈ [1, r2(δ)] . (6)

As the regularization parameterr(δ) we choose the parameterr, for which the
function t(r) = rs‖Br(Aur − f̃)‖ has the global minimum on the interval
[1, r2(δ)].

In [10] the parameter choice rule was considered, in whichr2(δ) was taken as
the regularization parameter. We can regard Rule P as the generalization ofthis
rule, since in cases = 0 these rules coincide due to the fact that the function
‖Br(Aur − f̃)‖ is monotonically decreasing with respect tor. On the other hand,
in cases = 1 Rule P is similar to the parameter choice by the quasioptimality
criterion, where the minimum point of the functionr‖Br(Aur−f̃)‖ is chosen as the
regularization parameter. The difference between Rule P and the quasioptimality
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criterion is the interval, on which the functionr‖Br(Aur − f̃‖ is minimized: the
intervals are[1, r2(δ)] and[1,∞), respectively.

In [10] it was proven for methods 1–5 that for each̃f ∈ H we have
limr→∞ ϕ(r) = 0. Due to the continuity of the functionϕ(r), it follows from
this property that the choice of the finite parametersr2(δ) and r(δ) ≤ r2(δ)
according to Rule P is possible. Note that the functionϕ(r) is non-monotone and
therefore in Rule P we must use the conditions (5)–(6) instead of the inequalities
b1δ ≤ ϕ(r) ≤ b2δ.

Theorem 1.Let A ∈ L(H, H), A = A∗ ≥ 0, f ∈ R(A). Let the parameter r(δ)

be chosen according to Rule P. If ‖f̃−f‖
δ ≤ const in the process δ → 0, then for

methods 1–5,
∥

∥ur(δ) − u∗
∥

∥ → 0.

Proof. DenoteGr := I − Agr(A). Then we haveur − u∗ = Gr(u0 − u∗) +
gr(A)(f̃ − f), and (3) yields

∥

∥ur(δ) − u∗
∥

∥ ≤
∥

∥Gr(δ)(u0 − u∗)
∥

∥ + γCr(δ)δ . (7)

In [10] it is proven thatr2(δ)δ → 0 for δ → 0. This convergence and the inequality
r(δ) ≤ r2(δ) yield the convergence of the second term of (7).

From the equality

Br(Aur − f̃) = ABrGr(u0 − u∗) − BrGr(f̃ − f) (8)

and from the inequality‖BrGr(f̃ − f)‖ ≤ ‖f̃ − f‖ ≤ Cδ it follows that

rs
2(δ)

∥

∥Br2(δ)(Aur2(δ) − f̃)
∥

∥ ≤ rs
2(δ)

∥

∥ABr2(δ)Gr2(δ)(u0 − u∗)
∥

∥ + rs
2(δ)Cδ . (9)

To show the convergence

rs
2(δ)

∥

∥ABr2(δ)Gr2(δ)(u0 − u∗)
∥

∥ → 0 for δ → 0 , (10)

we consider separately the cases a)r2(δ) → ∞ and b)r2(δ) ≤ r = const. If
r2(δ) → ∞ in the processδ → 0, then using the Banach–Steinhaus theorem,
we can prove similarly to [2] (p. 43) thatrp‖ABrGr(u0 − u∗)‖ → 0 if r → ∞
(0 ≤ p ≤ 1). Now we consider the caser2(δ) ≤ r = const. Using (8), (4), we get

r2(δ)
1/2

∥

∥A3/2B
3/2
r2(δ)Gr2(δ)(u0 − u∗)

∥

∥

≤ r2(δ)
1/2

∥

∥A1/2B
3/2
r2(δ)(Aur2(δ) − f̃)

∥

∥ + r2(δ)
1/2

∥

∥A1/2B
3/2
r2(δ)Gr2(δ)(f̃ − f)

∥

∥

≤ b2δ + γ1/2

∥

∥f̃ − f
∥

∥ ≤ (b2 + Cγ1/2)δ,

from which it follows that

∥

∥A3/2B
3/2
r2(δ)Gr2(δ)(u0 − u∗)

∥

∥ → 0 for δ → 0 .
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In [2] (p. 66) the implication

AGrn
(u0 − u∗) → 0 (n → ∞) =⇒ Grn

(u0 − u∗) → 0 (n → ∞) (11)

is proven. Similarly we can show that ifA3/2B
3/2
rn

Grn
(u0 − u∗) → 0 (n → ∞),

thenABrn
Grn

(u0−u∗) → 0 (n → ∞), which proves the convergence (10) in case
r2(δ) ≤ const. From (9), (10) and from the convergencer2(δ)δ → 0 (δ → 0) it
follows thatrs

2(δ)
∥

∥Br2(δ)(Aur2(δ) − f̃)
∥

∥ → 0 for δ → 0. This convergence yields

also the convergencers(δ)
∥

∥Br(δ)(Aur(δ) − f̃)
∥

∥ → 0 for δ → 0, while r(δ) is the

global minimum point of the functiont(r) = rs‖Br(Aur− f̃)‖ in [1, r2(δ)]. Using
(8), we get

rs(δ)
∥

∥ABr(δ)Gr(δ)(u0 − u∗)
∥

∥ ≤ rs(δ)
∥

∥Br(δ)(Aur(δ) − f̃)
∥

∥ + rs(δ)Cδ → 0

for δ → 0, and the implication of type (11) yields‖Gr(δ)(u0−u∗)‖ → 0 for δ → 0,
which with (7) proves the theorem.

Theorem 2.Let A ∈ L(H, H), A = A∗ ≥ 0, f ∈ R(A), ‖f̃ − f‖ ≤ δ. Let the
parameter r(δ) be chosen according to Rule P with s ∈ (0, 1) and let the function
t(r) = rs‖Br(Aur− f̃)‖ be monotonically increasing on the interval [r(δ), r2(δ)].
Then for methods 1–5the error estimation

∥

∥ur(δ) − u∗
∥

∥ ≤ c(b1, b∗)
1

1 − s
inf
r≥0

{∥

∥(I − Agr(A))(u0 − u∗)
∥

∥ + γrδ
}

holds, where b∗ = maxr(δ)≤r≤R(δ) ϕ(r)/δ ≥ b2 and R(δ) is the greatest parameter
for which ϕ(r) = b2δ.

Theorem 3.Let A ∈ L(H, H), A = A∗ ≥ 0, f ∈ R(A). Let the parameter r(δ)
be chosen according to Rule P with s ∈ (0, 1). Then in case ‖f̃ − f‖ > δ for
methods 1–5the following error estimations hold:

a) if δ ≤ ‖f̃ − f‖ ≤ δ0, where δ0 := ‖Br(δ)(Aur(δ) − f̃)‖, then

∥

∥ur(δ) − u∗
∥

∥ ≤ c1(b1, b∗)
1

1 − s
inf
r≥0

{∥

∥(I − Agr(A))(u0 − u∗)
∥

∥ + γr
∥

∥f̃ − f
∥

∥

}

;

b) if ‖f̃ − f‖ > δ0, then

∥

∥ur(δ) − u∗
∥

∥ ≤ c2(b1, b2)

(‖f̃ − f‖
δ0

)1/s

inf
r≥0

{∥

∥(I − Agr(A))(u0 − u∗)
∥

∥

+ γr
∥

∥f̃ − f
∥

∥

}

.

Note that all coefficientsc(b1, b∗), c1(b1, b∗), c2(b1, b2) in methods 1–3, 5 are
less than 2.5 in caseb1 = b2 = 1.5Cm, b∗ = b2.

The proofs of Theorems 2, 3 will be presented in a forthcoming paper.
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Regulariseerimisparameetri valikust enesekaassete
mittekorrektsete ülesannete lahendamisel lähteandmete

ligikaudu teadaoleva veataseme korral

Uno Hämarik ja Toomas Raus

On vaadeldud enesekaasse mittenegatiivse operaatoriga mittekorrektse üles-
ande lahendamist (itereeritud) Lavrentjevi meetodiga, iteratsioonimeetoditegaja
Cauchy ülesande meetodiga juhul, kui ülesande lähteandmete veatase on teada ligi-
kaudu. Pakutakse välja regulariseerimisparameetri valiku uus reegel. Tõestatakse
lähislahendi koonduvus ja antakse veahinnangud.
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