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Abstract. We consider ill-posed problemdu = f, where the operatod € L(H, H),
A = A* > 0, has a nonclosed range in the Hilbert spate We assume that instead ¢6f

noisy dataf are given, with the approximately known noise leyelThe problemAw = f is
regularized by the (iterated) Lavrentiev method, by iterative methods or by the method of the
Cauchy problem. For the choice of the regularization parameter we proposesgoosieriori
rule with the property that the regularized solution converges to the exact one in the process

& — 0 provided that the rati) f — f||/d is bounded fo6 — 0. The error estimates are given.
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1. INTRODUCTION

We consider an operator equation

Au=f, feR(A), 1)

with the linear continuous self-adjoint and non-negative operatear £L(H, H),
A = A* > 0, andu and f being elements of the real Hilbert spale We do not
suppose that the range(A) is closed and so in general our problem is ill-posed.
The kernelN(A) may be nontrivial. We suppose that instead of the exact right-
hand sidef we have an approximatiofi € H with the supposable noise lev&l
but it is unknown whether the inequalifyf — f|| < & holds or not.

For a stable numerical approximation of the solution of (1) some regularization
technique is needed. Here we consider the following regularization methods.
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1. The Lavrentiev method, = (af + A)~!(aug + f).

2. The iterated Lavrentiev method. Ley = wuo, € H be the initial
approximation, findu o = (o + A)"Haug_14 + f) fork = 1,...,m,
and takeu, = Uy, -

3. The explicit iteration scheme (Landweber’s method)

Up = Up—1 — p(AUup—1 — f), n=12,... (0<pu<1/||A4]).
4. The implicit iteration schemeuw,, + Au, = au,_1 + f n =12 ...
(v = const > 0).

5. The method of the Cauchy problem. We take dprthe solution of the
Cauchy problem

u'(r)+ Au(r) = f, u(0) = up.

All these methods can be presented in the general form {$@e [
up = (I — Agr(A))uo + gr(A)fv (2
whereu,. is the approximate solutiomg — initial approximationy — regularization

parameter (in methods 1 and2= 1/«; in methods 3 and 4, = n), I — identity
operator, and the functiog). (\) satisfies the conditions (3) and (4):

sup [gr(N)| <Ar, >0, ®3)
0<A<a
sup )\p}l—/\gr(x\)‘g’yprfp, r>0,0<p<po- (4)

0<A<a

Herepy, v, and~, are positive constantsy < 1, a > ||A|| and the greatest value
of pg, for which the inequality (4) holds, is called the qualification of the method.
For methods 1-5 the corresponding generating functions are

b= oy 0= 20 ()"

1

o) = 3 (1-0=), 0o =5 (1-(=25) ), ) = 3 (- ).

The qualifications of methods 1 and 2 are = 1 andpy, = m, respectively; in
methods 3-5pg = .
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2. KNOWN RULES FOR THE CHOICE OF THE REGULARIZATION

PARAMETER

By using the regularization method (2) with noisy data an important problem
is the choice of an appropriate regularization parametgror the choice of the
parameter two types of rules can be found in literature. Rules of the first type use
information about the noise level of dafarules of the second type do not use such
information. Below, we consider two rules tbfe first group.

1.

Morozov’s discrepancy principlé][ In this rule the regularization parameter
r = rp is chosen as the solution of the equation

HAu,. — fH ~bd with b=-const>1.

Modification of the discrepancy principlé&][ In this rule the regularization
parameter = ryp IS chosen as the solution of the equation

HBT(AUT — f)H ~bd with b=const>1,

where the operatoB, = I for py = oo, B, = (I — Ag,(A))Y/P for
po # oo. Note that for the Lavrentiev method and its iterative variant
1B (Atam = FlIl = l|Auam+1 = £l

Some useful properties of the modified discrepancy principle are{Bee [

1.

convergencelju,,,, — u«|| — 0 for § — 0; hereu, is nearest tay, solution
of the problemAu = f;

order-optimality: ifug — us = APv, v € H, ||v|| < o, p > 0, then
[uryn — sl < Cpgl/(p+l)5p/(p+1)- 0 < p < po;

. quasioptimality: there exists a constarstuch that

i — el < iE LT = Age(4)) (g — wa)| + 775}

However, the discrepancy principle and its modification have an essential
disadvantage. Namely, these choices are unstable in the sense that ifuidle ac
error of the right-hand side is larger thad the error of the approximate solution
may be arbitrarily large independently of the value of the ratio of the actuakto th
supposed noise level.

The parameter choice rulestbie second groupare sometimes called heuristic

or delta-free choices. The first rule of this kind was the quasioptimality ité],
in which such a parameter is chosen for which the function) = || B, (Au,— f)||

has the minimum. Other popular delta-free rules are Wahba’s cross-vatidatio
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rule [°] and Hansen’s.-curve rule []. Some heuristic rules are also proposed
in[%].

Although these rules often work well, it was shown by Bakushinsjitfat
the convergence of the approximate solution for heuristic parameter clubése
cannot be proved.

3. PARAMETER CHOICE RULE IN THE CASE OF THE
APPROXIMATELY GIVEN NOISE LEVEL OF DATA

In practice it may be complicated to find the exact noise level, but we often
have a rough guess at it. In the following we assume that the supposedessa
§ > 0is given, but we do not know exactly fiff — f|| <  holds or not. Our aim is
to present a rule for the stable parameter choice which guarantees teggemce
of the approximate solution to the exact solution if only the rgtio— f||/0 is
bounded in the procegs— 0, and to give some error estimates of the approximate
solution.

In the following the function

o(r) = V|| A2 BY2 (Au, — J)|| = Vi(B, (Au, — J), ABY (Au, — ]))"

plays an important role.
Note that for the Lavrentiev method and its iterative vaript= (I + rA)~1

andp(r) = p(a) = (Aumia = F, A(Aupisa — )Y/ for iterative

methodsp(r) = ¢(n) = n(Au, — f, Au, — f)V/2.
Rule P.Let0 < s < 1 andby, by be the constants such that> b; > C,,,, where

Cm=1/2,Cp =1/v/2m + 3, Cy, = 1/4/2pe, Cypy = \//2, andC,,, = 1/1/2¢
for methods 1-5, respectively. #(1) < b2d, chooser(d) = 1. In the opposite
case we find at firstz () > 1 such that

¢(ra(0)) < b2d, (5)

o(r) > b1 Vr e [1,r(0)]. (6)

As the regularization paramete(é) we choose the parametey for which the
function t(r) = r®||B,(Au, — f)|| has the global minimum on the interval

[1,72(6)].

In [°] the parameter choice rule was considered, in whigld) was taken as
the regularization parameter. We can regard Rule P as the generalizatiua of
rule, since in case = 0 these rules coincide due to the fact that the function
| B, (Au, — f)]| is monotonically decreasing with respecttoOn the other hand,
in cases = 1 Rule P is similar to the parameter choice by the quasioptimality
criterion, where the minimum point of the functief\B, (Au,— f)|| is chosen as the
regularization parameter. The difference between Rule P and the qirmsilify
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criterion is the interval, on which the functiot B, (Au, — f” is minimized: the
intervals ard1, r2(9)] and[1, co), respectively. .

In ['Y] it was proven for methods 1-5 that for eaghc H we have
lim, o p(r) = 0. Due to the continuity of the functiop(r), it follows from
this property that the choice of the finite parameter&) and r(§) < r2(9)
according to Rule P is possible. Note that the functign) is non-monotone and
therefore in Rule P we must use the conditions (5)—(6) instead of the ilitezpia
b10 < @(r) < bad.

Theorem1.Let A € L(H,H), A= A" >0, f € R(A). Let the parameter ()

be chosen according to Rule P. If M < const in the process § — 0, then for
methods 1-5, ||, (5) — u.|| — 0.

Proof. DenoteG,. := I — Ag,(A). Then we havei, — u. = Gp(up — us) +
g-(A)(f — f), and (3) yields

[tr(s) = ]| < [|Grsy (w0 — ) || +~Cr(8)8 . ©)

In [19]itis proven that(5)d — 0 for § — 0. This convergence and the inequality
r(d) < ro(9) yield the convergence of the second term of (7).
From the equality

B, (Au, — f) = AB.Gy(ug — u) — B,G,(f — f) ®)
and from the inequality B, G,.(f — f)|| < ||f — f|| < C4¢ it follows that
(6)|| Bro(s) (Attry(s) = )| < 75(8)|| ABry6) Gra(s) (10 — ) || +75(8)C5 . (9)
To show the convergence
8)||AByy (5)Gry(s) (w0 — us)|| = 0 for 6 —0, (10)
we consider separately the cases#)) — oo and b)rq(0) < 7 = const. If
ro(0) — oo in the proces® — 0, then using the Banach—Steinhaus theorem,

we can prove similarly to?] (p. 43) thatr?||AB,G,(ug — us)|| — 0if r — oo
(0 < p < 1). Now we consider the case(d) < 7 = const. Using (8), (4), we get

2(8)'(| 4% B Gy (w0 — )|
< ral0) 2 A2 (At~ D+ 12060V 4B Gt - )
< bod +yipe|[f = f < (b2 + 071/2)5,
from which it follows that
|4¥2B2% Gros) (o — wa)|| = 0 for 6 —0.
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In [?] (p. 66) the implication
AG,y, (ug—us) = 0(n —>00) = G, (up—usx) = 0(n—o00) (11)

is proven. Similarly we can show thatif/2By/%G,. (ug — us) — 0 (n — o00),
thenAB,, Gy, (up—us) — 0 (n — 00), which proves the convergence (10) in case
r2(0) < const. From (9), (10) and from the convergenggd)d — 0 (0 — 0) it
follows thatrs(0)|| B, (s) (At — f)| — 0 for § — 0. This convergence yields
also the convergena€ (§) || B, s)(Au,s) — f)|| — 0 for § — 0, while 7(6) is the
global minimum point of the functiot(r) = || B.(Au, — f)| in [1, 72(d)]. Using
(8), we get

r(0)|| ABy(5)Gr(s) (1o — ua) || < 75(8)|| Byo) (Aup(sy — ]| +r°(8)C6 — 0

for § — 0, and the implication of type (11) yield&7, ) (uo —ux)|| — 0for§ — 0,
which with (7) proves the theorem.

Theorem 2.Let A € L(H,H), A= A* >0, f € R(A), ||f — f|]| <. Letthe
parameter r(d) be chosen according to Rule P with s € (0, 1) and let the function
t(r) = r*|| B, (Au, — f)|| be monotonically increasing on theinterval [r(9), r2(4)].
Then for methods 1-5the error estimation

ey — | < b, be) 7 inf {]|(T — Age(A)) (o — w)]| + 776}

—Sr>
holds, where b, = max,5)<,<r(s) ¢(r)/d > bz and R(¢) isthe greatest parameter
for which ¢(r) = b2é.

Theorem 3.Let A € L(H,H), A= A* > 0, f € R(A). Let the parameter r(J)
be chosen according to Rule P with s € (0,1). Thenincase ||f — f| > ¢ for
methods 1-5the following error estimations hold:

a) if § < ||f — fIl < do, where o := || B, (s) (Auy(s) — f)|, then

v = 0] < ex(br.be) = it {17 = Age(A) o — )| + 40| = 1]}

— S r>0

b) if || — f|| > do, then

+orllf= £}

Note that all coefficients(by, bs), c1(b1,bs), c2(b1, b2) in methods 1-3, 5 are
lessthan 2.5 in cadg = by = 1.5C,,, by, = bo.
The proofs of Theorems 2, 3 will be presented in a forthcoming paper.
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Regulariseerimisparameetri valikust enesekaassete
mittekorrektsete Ulesannete lahendamisel l&hteandmete
ligikaudu teadaoleva veataseme korral

Uno Hamarik ja Toomas Raus

On vaadeldud enesekaasse mittenegatiivse operaatoriga mittekorrektse ule
ande lahendamist (itereeritud) Lavrentjevi meetodiga, iteratsioonimeetogitega
Cauchy tlesande meetodiga juhul, kui Glesande lahteandmete veatasgedigiea
kaudu. Pakutakse vdlja regulariseerimisparameetri valiku uus reegettatékse
lahislahendi koonduvus ja antakse veahinnangud.
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