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Abstract. Let Banach spacesX andXn, n ∈N, together with connection operatorspn ∈
L(X,Xn), build a discrete convergence framework. Given an equationAu = f with
f ∈X, A ∈ L(X), we apply GMRES to an approximate (usually finite dimensional) equation
Anun = fn with fn ∈ Xn, An ∈ L(Xn). Under certain conditions we establish estimates of
the residual‖Anun,k − fn‖ and the error‖ un,k − un ‖ of thekth GMRES approximation
un,k to un = A−1

n fn. Applications to the Galerkin method for singular integral equations are
discussed.

Key words: GMRES, optimal reduction factor, discrete convergence, singular integral equa-
tions, Galerkin method, fast solvers.

1. GMRES: PRELIMINARIES AND INTRODUCTION

Let us recall some basic knowledge about GMRES. LetX be a complex
Banach space. Consider the equationAu = f wheref ∈ X andA ∈ L(X) are
given andu ∈ X is to be determined. The Krylov subspace methods to solve
this equation produce approximate solutions in the Krylov subspacesKk(f,A) =
span{f,Af, ..., Ak−1f}. One of the most popular methods is the generalized
minimal residual (GMRES) method, which determinesuk ∈ Kk(f,A), k =
1, 2, ..., such that

‖ Auk − f ‖= inf
u∈Kk(f,A)

‖ Au− f ‖ .

(If X is a Hilbert space, GMRES has different iteration realizations, one application
of A per iteration; see, e.g., [1].) The convergence and convergence speed are
characterized by the reduction factors [2]
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ηk(A) = inf
ϕk∈Πk

‖ϕk(A)‖1/k , η(A) = inf
k∈N

ηk(A) = lim
k→∞

ηk(A),

where Πk is the set of polynomialsϕk(λ) =
∑k

j=0 αjλ
j which satisfy the

conditionϕk(0) = 1. Namely,‖ Auk − f ‖≤ ηk(A)k ‖ f ‖, and ifη(A) < 1, then
for everyη ∈ (η(A), 1) there is akη such that

‖ Auk − f ‖≤ ηk ‖ f ‖ for k ≥ kη. (1)

Introduce the following designations:
ρ(A) is the resolvent set ofA;
ρ∞(A) is the unbounded component (maximal open connected subset) ofρ(A);
σ(A) = C\ρ(A) is the spectrum ofA;
σ∞(A) = C \ ρ∞(A) (thusσ(A) is a part ofσ∞(A));
σess(A) = {λ ∈ C : λI − A ∈ L(X) is non-Fredholm} is the essential

spectrum ofA;
for a setΛ ⊂ C, ∂Λ is the boundary set andΛ† is Λ without its isolated points;
for a compact setΛ ⊂ C, ηΛ = infk∈N, ϕk∈Πk

supλ∈Λ | ϕk(λ) |1/k.

Theorem 1 [2]. (i) η(A) = 0 if 0 ∈ ρ(A) and σ(A) is at most countable;
(ii) η(A) < 1 if and only if 0 ∈ ρ∞(A);
(iii) η(A) = η∂ρ∞(A) = ησess(A) = ησ(A) = ησ∞(A);
(iv) if An ∈ L(X), ‖ An −A ‖→ 0, then lim sup η(An) ≤ η(A).

In [2] assertion (iii) is proved in the formη(A) = ησ(A). The extended formula-
tion easily follows from the following relations:

(∂ρ∞(A))† ⊂ σess(A) ⊂ σ(A) ⊂ σ∞(A), ∂σ∞(A) = ∂ρ∞(A),

ηΛ = η∂Λ (due to the principle of maximum),
ηΛ = ηΛ† (see [2], with the conventionηØ = 0).

By the way, the last relation allows us to complete (iii) by further four equalities
where the sets without isolated points are used.

The assertion of type (iv) is useless whenAn is an approximation ofA in a
finite dimensional spaceXn. First of all, in general we cannot speak about norm
convergence of operators in this case. Further,ηk(A) = 0 for k ≥ dimXn, hence
η(An) = 0 and the “then” part of (iv) is trivial. Finally, the equalityη(An) = 0
does not give much information about the convergence speed of GMRESfor the
approximate equationAnun = fn. It may happen that the error and the residual
of the GMRES approximationun,k are great fork = 1, ...,dimXn − 1; usually
dimXn is of the ordernd, n = 1, 2 or 3. More useful is an estimate of the type
(cf. (1))

‖ Anun,k − fn ‖≤ ηk ‖ fn ‖ for η > η(A), n ≥ nη, k ≥ kη,
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which implies that an accuracyδn−r, r > 0, is achieved ink = O(logn) GMRES
iterations. In Section 2 we give conditions for the validity of such an inequality(see
Theorem 2). In Section 3 we present some applications to the case whereA is a
periodic singular integral operator which is discretized with the help of the Galerkin
method or its fully discrete version. In this way we compose some fast solversof the
problem: an approximate solution which is of optimal accuracy order and depends
onn parameters can be determined inO(n log2 n) arithmetical operations.

2. GMRES FOR THE DISCRETIZED PROBLEM

Let X andXn (n ∈ N) be complex Banach spaces andP =(pn) a system
of so-called connection operatorspn ∈ L(X,Xn) which satisfy the condition
‖ pnu ‖→‖ u ‖ ∀u ∈ X asn → ∞. The triple (X, (Xn), (P)) builds a discrete
convergence framework. Namely, a sequence (un) with un ∈ Xn is said to be
discretely convergent (orP-convergent) tou ∈ X if ‖ un − pnu ‖→ 0 asn→ ∞;
we writeun 99K u. A sequence of operatorsAn ∈ L(Xn) is said to be discretely
convergent (orP-convergent) toA ∈ L(X) if for every P-convergent sequence
(un), un 99K u, there holdsAnun 99K Au; we writeAn 99K A. More about these
and other notions see in [3]. In particular, the following two lemmas hold true.

Lemma 1. An 99K A if and only if ‖ An ‖≤ c = const (n ∈ N) and ‖ Anpnu −
pnAu ‖→ 0 ∀u ∈ X (or for every u from a dense set of X) as n→∞.

Notice thatIn 99K I, whereI andIn are the identity operators inX andXn,
respectively. ThusAn 99K A is equivalent toλIn − A 99K λI − A with a given
λ ∈ C. For aλ ∈ C, the convergenceλI − An 99K λI − A is said to be stable
if there arenλ andcλ > 0 such thatλ ∈ ρ(An) and‖ (λIn − An)−1 ‖≤ c−1

λ
for n ≥ nλ; in the case of finite dimensional spacesXn this is equivalent to the
stability inequality‖vn‖ ≤ cλ‖Anvn − λvn‖ for all n ≥ nλ, vn ∈ Xn.

Lemma 2. Let Λ ⊂ ρ(A) be a compact set. Assume that λIn − An 99K λI − A
stably for any λ ∈ Λ. Then there are nΛ and cΛ such that Λ ⊂ ρ(An) and
‖ (λIn −An)−1 ‖≤ cΛ for every λ ∈ Λ, n ≥ nΛ.

Let us return to the equationAu = f in X and its approximation
(“discretization”)Anun = fn in Xn. Our main result reads as follows.

Theorem 2. Assume that A ∈ L(X), An ∈ L(Xn), λIn − A 99K I − λA stably
for any λ ∈ ρ∞(A). Let η(A) < 1. Then for every η ∈ (η(A), 1) there are nη and
kη such that

‖ Anun,k − fn ‖≤ ηk ‖ fn ‖ for n ≥ nη, k ≥ kη, (2)

which implies ‖un,k − un‖ ≤ cηk‖fn‖ for n ≥ nη, k ≥ kη. Here un,k ∈
Kk(fn, An) is the kth GMRES approximation to the solution un of the equation
Anun = fn.
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Proof. Fix a numberη ∈ (η(A), 1). By Theorem 1(iii) there arem andψm ∈ Πm

such that

sup
λ∈σ∞(A)

| ψm(λ) |1/m≤ η −
η − η(A)

2
.

In a δ-neighbourhoodUδ =∪λ∈σ∞(A)B(λ, δ) of σ∞(A) with a sufficiently small
δ = δ(η) we have

sup
λ∈Uδ

| ψm(λ) |1/m≤ η −
η − η(A)

4
.

Sinceσ∞(A) ⊂ C is compact, its cover∪λ∈σ∞(A)B(λ, δ) has a finite subcover:
σ∞(A) ⊂ ∪N

j=1B(λj , δ)
.
= Vδ ⊂ Uδ. The boundaryΓδ of Vδ lies inρ∞(A) and is

piecewise smooth (consists of a finite number of circle arcs). Take anyk ∈ N and
represent it in the formk = im + j, i ≥ 0, 0 ≤ j ≤ m − 1. Introduceϕk = ψi

m,
thenϕk ∈ Πk and

sup
λ∈Vδ

| ϕk(λ) |1/k ≤

(

η −
η − η(A)

4

)im/k

≤

(

η −
η − η(A)

4

)(1−(m−1))/k

≤ η −
η − η(A)

8

for sufficiently largek, sayk ≥ kη. Applying Lemma 2 withΛ = {λ ∈ C \ Vδ :
| λ |≤ c + 1}, wherec ≥‖ An ‖, n ∈ N (see Lemma 1), and withΛ = Γδ, we
observe that

σ(An) ⊂ Vδ, Γδ ⊂ ρ(An), sup
λ∈Γδ

‖ (λIn −An)−1 ‖≤ cδ = const

for sufficiently largen, sayn ≥ nη. This enables representation ofϕk(An) in the
form (see [4])

ϕk(An) =
1

2πi

∫

Γδ

ϕk(λ)(λIn −An)−1dλ

which implies

‖ ϕk(An) ‖≤
1

2π
cδ | Γδ |

(

η −
η − η(A)

8

)k

,

‖ ϕk(An)‖1/k ≤ bδ,k

(

η −
η − η(A)

8

)

, bδ,k =

(

1

2π
cδ | Γδ |

)1/k

→ 1

ask → ∞.

Thus, for sufficiently large k (let it be again for k ≥ kη), we have
‖ ϕk(An) ‖1/k≤ η, ηk(An) ≤ η. Now the assertions of Theorem 2 follow: for
n ≥ nη, k ≥ kη we have

‖ Anun,k − fn ‖≤ ηk(An)k ‖ fn ‖≤ ηk ‖ fn‖, ‖un,k − un‖ ≤ cηk‖fn‖;
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the uniform boundedness‖A−1
n ‖ ≤ c is given by the condition about the stable

convergenceλI − An 99K λI − A for λ = 0 ∈ ρ∞(A) (see also Theorem 1(ii)).
The proof of Theorem 2 is complete.

3. APPLICATION TO THE GALERKIN METHOD

3.1. Periodic singular integral equation

Consider the integral equation

(Au)(t)
.
= a1(t)u(t) + a2(t)(Su)(t) + (Tu)(t) = f(t), 0 ≤ t ≤ 1, (3)

where(Su)(t) = i
∫ 1
0 cotπ(t− s)u(s)ds is the Hilbert operator with the integral

understood in the sense of the principal value, whereasT is of the form(Tu)(t) =
∫ 1
0 κ(t − s)a(t, s)u(s)ds with the absolutely convergent integral. About the

coefficients and the kernel we assume the following:
(A1) a1, a2 ∈ C∞

1 , a2
1(t) − a2

2(t) 6= 0 ∀t ∈ [0, 1],
W(a1 − a2) = W(a1 + a2) = 0;

(A2) a ∈ C∞
1,1, κ is 1-periodic (possibly weakly singular),

| κ̂(j) |≤| j |β (0 6= j ∈ Z), β < 0;
(A3) Au = 0, u ∈ C∞

1 ⇒ u = 0.
Here C∞

1 and C∞
1,1 are the sets of allC∞-smooth 1-periodic, respectively

1-biperiodic functions, W stands for the winding number andû(j) =
∫ 1
0 u(s)e

−ij2πsds, j ∈ Z, are the Fourier coefficients ofu. Denote byHr,
r ∈ R, the Sobolev space of 1-periodic functions (distributions) with the norm
‖ u ‖r= (| û(0) |2 +

∑

06=j∈Z
| j |2r| û(j) |2)1/2. (It is a Hilbert space with an

obvious scalar product.)
Due to (A1),A0

.
= a1I + a2S ∈ L(Hr) is Fredholm operator of index 0; due

to (A2),T ∈ L(Hr) is compact, henceA = A0 +S ∈ L(Hr) is Fredholm operator
of index 0, too, and (A3) implies that0 ∈ ρ(A). Moreover,σess(A) = σess(A0) =
Γ+ ∪Γ−, whereΓ± = {λ ∈ C : λ = a1(t)± a(t), 0 ≤ t ≤ 1} is the range of the
functiona1 ± a2. A consequence of Theorem 1(iii),(ii) is thatη(A) = η(A0) < 1
if and only if the following assumption is fulfilled:

(A4) there is a polygonal path from 0 to∞ not meetingΓ+ ∪ Γ−.
Note that W(a1 − a2 − λ) = W(a1 + a2 − λ) = 0 for anyλ ∈ ρ∞(A0), thus

(A4) implies, in particular, the equality W(a1 − a2) = W(a1 + a2)= 0 assumed
in (A1).

Under assumptions (A1)–(A4) GMRES can be applied directly to Eq. (3) and
to its discretizations which satisfy the stability condition of Theorem 2, e.g., to
Galerkin and collocation discretizations. Galerkin discretizations will be discussed
in the next subsection. If (A4) is violated, problem (3) needs in a precondition to
solve it by GMRES (see Subsection 3.3).
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3.2. Galerkin discretizations and GMRES

Introduce the subspaces

Tn = span{eij2πt : −n/2 < j ≤ n/2}, n ∈ N.

The orthogonal projectionPn : Hr → Tn and the interpolation projectionQn :
C[0, 1] → Tn are defined by

Pnu =
∑

−n/2<j≤n/2

û(j)eij2πt,

Qnu ∈ Tn, (Qnu)(jh) = u(jh), j = 1, ..., n, h = 1/n.

Consider the Galerkin method

un ∈ Tn, PnAun = Pnf. (4)

It is of optimal accuracy order (see [1]): if assumptions (A1)–(A3) are fulfilled
andf ∈ Hr0 , thenu = A−1f ∈ Hr0 , un is uniquely determined from (4) for all
sufficiently largen, sayn ≥ n0, and for allr ≤ r0 there holds

‖ un − u ‖r≤ cr,r0
nr−r0 ‖ u ‖r0

. (5)

With X = Hr, Xn = Tn (equipped with the norm‖ un ‖r), pn = Pn, An = PnA
(restricted toTn) we have, due to Lemma 1,An 99K A. Further, (A1)–A(3),
together with the equality W(a1−a2−λ)= W(a1+a2−λ) = 0 for anyλ ∈ ρ∞(A),
imply the stability inequality (see [1])

‖ vn ‖r≤ cλ,r ‖ PnAvn − λvn ‖r, n ≥ nλ, vn ∈ Tn, λ ∈ ρ∞(A), r ∈ R.

If also (A4) is fulfilled, then the conditions of Theorem 2 are satisfied, hence
estimate (2) holds true when Galerkin equation (4) is solved by GMRES.

A drawback of the pure Galerkin method (4) is that it is not fully discrete. To
obtain a fully discrete method, we use approximate data which depend only on the
grid values of the data:

a1n = Qna1, a2n = Qna2, al = Ql,la, fn = Qnf

(assumingf ∈ Hr0 , r0 > 1/2, which implies the continuity off ). HereQl,l is
the two-dimensional interpolation projection of the orderl ∼ nσ, 0 ≤ σ ≤ 1. We
assume that the Fourier coefficients of functionκ are known, therefore we do not
need to approximateκ. We put

A(n) = a1nI + a2nS + TlPm, (Tlv)(t) =

∫ 1

0
κ(t− s)al(t, s)v(s)ds,
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m ∼ nτ ,
r0

r0 − β
≤ τ ≤ 1

with β < 0 from condition (A2). The fully discrete modification of the Galerkin
method reads as follows:

un ∈ Tn, PnA
(n)un = Qnf. (6)

It maintains the optimal accuracy order (5) for0 ≤ r ≤ r0; since‖Pn(A(n) −
A)‖L(Xn) → 0, also the stability inequality is maintained:

‖ vn ‖r≤ cλ,r ‖ PnA
(n)vn − λvn ‖r, n ≥ nλ, vn ∈ Tn, λ ∈ ρ∞(A), r ∈ R.

In particular, using theL2 norm, we obtain the following result.

Theorem 3. Assume (A1)–(A4) and f ∈ Hr0 , r0 > 1/2. Then with X = H0,
Xn = Tn (equipped with the norm from H0 = L2(0, 1)), pn = Pn, An = PnA

(n)

(restricted to Tn), estimate (2) holds for GMRES applied to fully discrete Galerkin
equation (6).

It is reasonable to iterate by GMRES until the residual‖ Anun −Qnf ‖0

achieves a levelδn−r0 , whereδ > 0 is a parameter. This happens afterO(logn)
iterations. It is shown in [1] how an application ofAn to a vn ∈ Tn can be
performed inO(n log n) arithmetical operations provided that the discretization
parametersσ andτ satisfy the conditionsσ ≤ 1/2, σ+τ≤ 1; the second condition
can be omitted by using more sophisticated approximations ofA which involve
asymptotic expansions of operatorTl (see [1] for details). The full cost of an
GMRES solutionun,k of an optimal accuracy order isO(n log2 n) arithmetical
operations. This can be reduced toO(n logn) by incorporating two grid iterations
into the scheme so that GMRES is applied only in lower dimensions; however,
theseO(n logn) schemes have not been justified when GMRES is applied to the
non-preconditioned problem as considered here.

Notice that neither‖ A − An ‖L(X) nor ‖ A − An ‖L(Xn,X) converge to 0 if
a1 or a2 is non-constant. So the discrete convergence together with the stability
estimates is a real lifebelt to justify the uniform convergence of GMRES for the
discretized equations in this case.

3.3. Precondition of the problem

Consider the case where only assumptions (A1)–(A3) are fulfilled, whereas
(A4) may be violated. For simplicity we assume that

a2
1(t) − a2

2(t) = 1 ∀ ∈ t ∈ [0, 1].

(This can be easily achieved by dividing Eq. (3) bya2
1 − a2

2.) Then

B = a1I − a2(S + P0), P0u =

∫ 1

0
u(s)ds,
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is an invertible regularizer for operatorA, in particular,BA = I − C, where
C ∈ L(Hr) is a compact operator for anyr ∈ R. By Theorem 1(i),η(BA) = 0,
hence GMRES is applicable to the preconditioned equationBAu = Bf as well as
to its discretizations(BA)nun = Bnfn provided that the stability condition

‖ vn ‖≤ cλ ‖ (BA)nvn − λvn ‖, n ≥ nλ, vn ∈ Tn, λ ∈ ρ∞(A)

is satisfied; the number of GMRES iterations to achieve an accuracyδn−r0 is now
o(log n) instead ofO(log n). For instance, we may put(BA)n = PnB

(n)A(n)

with B(n) = a1nI − a2n(S + P1) andA(n) defined in Subsection 3.2. This case is
thoroughly examined in [1] on the basis of the norm convergence ofPnB

(n)A(n) to
BA (which takes place due to the representationBA = I − C with a compact
C), so we do not go into details. On the other hand, the legitimacy of the
approximation(BA)n= PnBPnA and its fully discrete versionPnB

(n)PnA
(n)

is an open problem.
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GMRES ja operaatorite diskreetne aproksimeerimine
Gennadi Vainikko

Olgu X ja Xn, n ∈ N, Banachi ruumid, mis koos siduvate operaatoritega
pn ∈ L(X,Xn) moodustavad diskreetse koondumise raamistiku. Artiklis on vaa-
deldud võrranditAu = f ruumisX ja selle “diskretisatsiooni”Anun = fn ruumis
Xn. Uuritakse GMRES-i ühtlast koondumist diskretisatsiooniparameetrin suh-
tes. Põhitulemus on esitatud teoreemis 2. Seda rakendatakse situatsioonis, kus
perioodilise singulaarse integraalvõrrandi diskretiseerimisel kasutatakse Galjorkini
meetodit või selle täielikult diskreetset modifikatsiooni.
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